January  2013, 12(1): 117-124. doi: 10.3934/cpaa.2013.12.117

A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component

1. 

School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000 Jiangxi, China

Received  September 2010 Revised  March 2011 Published  September 2012

We study the Cauchy problem for the 3D Navier-Stokes equations, and prove some scalaring-invariant regularity criteria involving only one velocity component.
Citation: Zujin Zhang. A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. Communications on Pure & Applied Analysis, 2013, 12 (1) : 117-124. doi: 10.3934/cpaa.2013.12.117
References:
[1]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $R^n$,, Chinese Ann. Math. Ser. B, 16 (1995), 407.   Google Scholar

[2]

H. Beirão da Veiga and L. C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows,, Differential Integral Equations, 15 (2002), 345.   Google Scholar

[3]

C. S. Cao, Sufficient conditions for the regularity to the $3$D Navier-Stokes equations,, Discrete Contin. Dyn. Syst., 26 (2010), 1141.   Google Scholar

[4]

C. S. Cao and E. S. Titi, Global regularity criterion for the $3$D Navier-Stokes equations involving one entry of the velocity gradient tensor,, preprint, ().   Google Scholar

[5]

C. S. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643.   Google Scholar

[6]

P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations,, Indiana Univ. Math. J., 42 (1993), 775.   Google Scholar

[7]

L. Escauriaza, G. Seregin and V. Sverák, Backward uniqueness for parabolic equations,, Arch. Ration. Mech. Anal., 169 (2003), 147.   Google Scholar

[8]

J. S. Fan, S. Jiang and G. X. Ni, On regularity criteria for the $n$-dimensional Navier-Stokes equations in terms of the pressure,, J. Differential Equations, 244 (2008), 2963.   Google Scholar

[9]

E. Hopf, Üer die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213.   Google Scholar

[10]

J. M. Kim, On regularity criteria of the Navier-Stokes equations in bounded domains,, J. Math. Phys., 51 (2010).   Google Scholar

[11]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math. Phys., 48 (2007).   Google Scholar

[12]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.   Google Scholar

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.   Google Scholar

[14]

J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity,, Topics in Mathematical Fluid Mechanics, (2002), 163.   Google Scholar

[15]

J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the $3$D Navier–Stokes equations,, in Mathematical Fluid Mechanics (Recent Results and Open Problems), (2001), 239.   Google Scholar

[16]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing the gradient of velocity,, Appl. Math., 49 (2004), 483.   Google Scholar

[17]

G. Prodi, Un teorema di unicitá per le equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173.   Google Scholar

[18]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 9 (1962), 187.   Google Scholar

[19]

J. Serrin, The initial value problems for the Navier-Stokes equations,, in, (1963).   Google Scholar

[20]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", North-Holland Publishing Co., (1977).   Google Scholar

[21]

X. C. Zhang, A regularity criterion for the solutions of $3$D Navier-Stokes equations,, J. Math. Anal. Appl., 346 (2008), 336.   Google Scholar

[22]

Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\R^3$,, J. Differential Equations, 216 (2005), 470.   Google Scholar

[23]

Z. J. Zhang, Z. A. Yao, P. Li, C. C. Guo and M. Lu, Two new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor,, Acta Appl. Math.., ().  doi: doi: 10.1007/s10440-012-9712-4.  Google Scholar

[24]

Y, Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity,, Monatsh. Math., 144 (2005), 251.   Google Scholar

[25]

Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations,, J. Math. Pures Appl., 84 (2005), 1496.   Google Scholar

[26]

Y. Zhou, On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $R^n$,, Z. Angew. Math. Phys., 57 (2006), 384.   Google Scholar

[27]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component,, J. Math. Phys., 50 (2009).   Google Scholar

[28]

Y. Zhou and M. Pokorný, On the regularity to the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.   Google Scholar

[29]

Y. Zhou, Regularity criteria in terms of pressure for the $3$D Navier-Stokes equations in a generic domain,, Math. Ann., 328 (2004), 173.   Google Scholar

[30]

Y. Zhou, Weighted regularity criteria for the three-dimensional Navier-Stokes equations,, Proc. Roy. Soc. Edinburgh, 139 (2009), 661.   Google Scholar

show all references

References:
[1]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $R^n$,, Chinese Ann. Math. Ser. B, 16 (1995), 407.   Google Scholar

[2]

H. Beirão da Veiga and L. C. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows,, Differential Integral Equations, 15 (2002), 345.   Google Scholar

[3]

C. S. Cao, Sufficient conditions for the regularity to the $3$D Navier-Stokes equations,, Discrete Contin. Dyn. Syst., 26 (2010), 1141.   Google Scholar

[4]

C. S. Cao and E. S. Titi, Global regularity criterion for the $3$D Navier-Stokes equations involving one entry of the velocity gradient tensor,, preprint, ().   Google Scholar

[5]

C. S. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643.   Google Scholar

[6]

P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations,, Indiana Univ. Math. J., 42 (1993), 775.   Google Scholar

[7]

L. Escauriaza, G. Seregin and V. Sverák, Backward uniqueness for parabolic equations,, Arch. Ration. Mech. Anal., 169 (2003), 147.   Google Scholar

[8]

J. S. Fan, S. Jiang and G. X. Ni, On regularity criteria for the $n$-dimensional Navier-Stokes equations in terms of the pressure,, J. Differential Equations, 244 (2008), 2963.   Google Scholar

[9]

E. Hopf, Üer die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213.   Google Scholar

[10]

J. M. Kim, On regularity criteria of the Navier-Stokes equations in bounded domains,, J. Math. Phys., 51 (2010).   Google Scholar

[11]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math. Phys., 48 (2007).   Google Scholar

[12]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.   Google Scholar

[13]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.   Google Scholar

[14]

J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity,, Topics in Mathematical Fluid Mechanics, (2002), 163.   Google Scholar

[15]

J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the $3$D Navier–Stokes equations,, in Mathematical Fluid Mechanics (Recent Results and Open Problems), (2001), 239.   Google Scholar

[16]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing the gradient of velocity,, Appl. Math., 49 (2004), 483.   Google Scholar

[17]

G. Prodi, Un teorema di unicitá per le equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173.   Google Scholar

[18]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 9 (1962), 187.   Google Scholar

[19]

J. Serrin, The initial value problems for the Navier-Stokes equations,, in, (1963).   Google Scholar

[20]

R. Temam, "Navier-Stokes Equations, Theory and Numerical Analysis,", North-Holland Publishing Co., (1977).   Google Scholar

[21]

X. C. Zhang, A regularity criterion for the solutions of $3$D Navier-Stokes equations,, J. Math. Anal. Appl., 346 (2008), 336.   Google Scholar

[22]

Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\R^3$,, J. Differential Equations, 216 (2005), 470.   Google Scholar

[23]

Z. J. Zhang, Z. A. Yao, P. Li, C. C. Guo and M. Lu, Two new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor,, Acta Appl. Math.., ().  doi: doi: 10.1007/s10440-012-9712-4.  Google Scholar

[24]

Y, Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity,, Monatsh. Math., 144 (2005), 251.   Google Scholar

[25]

Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations,, J. Math. Pures Appl., 84 (2005), 1496.   Google Scholar

[26]

Y. Zhou, On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in $R^n$,, Z. Angew. Math. Phys., 57 (2006), 384.   Google Scholar

[27]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component,, J. Math. Phys., 50 (2009).   Google Scholar

[28]

Y. Zhou and M. Pokorný, On the regularity to the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.   Google Scholar

[29]

Y. Zhou, Regularity criteria in terms of pressure for the $3$D Navier-Stokes equations in a generic domain,, Math. Ann., 328 (2004), 173.   Google Scholar

[30]

Y. Zhou, Weighted regularity criteria for the three-dimensional Navier-Stokes equations,, Proc. Roy. Soc. Edinburgh, 139 (2009), 661.   Google Scholar

[1]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[2]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[3]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[4]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[5]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[6]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[7]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[8]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[9]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[10]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[11]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[12]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[13]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[14]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603

[15]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[16]

Wendong Wang, Liqun Zhang, Zhifei Zhang. On the interior regularity criteria of the 3-D navier-stokes equations involving two velocity components. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2609-2627. doi: 10.3934/dcds.2018110

[17]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[18]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[19]

Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic & Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

[20]

Yuming Qin, Lan Huang, Shuxian Deng, Zhiyong Ma, Xiaoke Su, Xinguang Yang. Interior regularity of the compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 163-192. doi: 10.3934/dcdss.2009.2.163

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]