-
Previous Article
Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data
- CPAA Home
- This Issue
-
Next Article
Renormalized entropy solutions for degenerate parabolic-hyperbolic equations with time-space dependent coefficients
The Katok-Spatzier conjecture, generalized symmetries, and equilibrium-free flows
1. | Department of Mathematics, Brigham Young University, Provo, UT 84602 |
References:
[1] |
R. L. Adler and R. Palais, Homeomorphic conjugacy of automorphisms on the torus,, Proc. Amer. Math. Soc., 16 (1965), 1222.
doi: 10.1090/S0002-9939-1965-0193181-8. |
[2] |
L. F. Bakker, A reducible representation of the generalized symmetry group of a quasiperiodic flow,, in, (2003), 68.
|
[3] |
L. F. Bakker, Structure of group invariants of a quasiperiodic flow, , Electron. J. Differential Equations, 39 (2004), 1.
|
[4] |
L. F. Bakker, Rigidity of projective conjugacy of quasiperiodic flows of Koch type,, Colloq. Math., 112 (2008), 291.
doi: 10.4064/cm112-2-6. |
[5] |
L. F. Bakker and G. Conner, A class of generalized symmetries of smooth flows, , Commun. Pure Appl. Anal., 3 (2004), 183.
doi: 10.3934/cpaa.2004.3.183. |
[6] |
L. Barreira and Y. B. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory,'', University Lecture Series, (2002).
|
[7] |
D. Berend, Multi-invariant sets on tori, , Trans. Amer. Math. Soc., 280 (1983), 509.
doi: 10.1090/S0002-9947-1983-0716835-6. |
[8] |
D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions I. Kam method and $Z^k$ actions on the torus, , Ann. of Math., 172 (2010), 1805.
doi: 10.4007/annals.2010.172.1805. |
[9] |
K. Dekimpe, What is an infra-nilmanifold endomorphism?,, Notices Amer. Math. Soc., 58 (2011), 688.
|
[10] |
B. R. Fayad, Weak mixing for reparameterized linear flows on the torus,, Ergodic Theory Dynam. Systems, 22 (2002), 187.
doi: 10.1017/S0143385702000081. |
[11] |
B. R. Fayad, Analytic mixing reparameterizations of irrational flows,, Ergodic Theory Dynam. Systems, 22 (2002), 437.
doi: 10.1017/S0143385702000214. |
[12] |
A. Gogolev, Smooth conjugacy of Anosov diffeomorphisms on higher dimensional tori,, J. Mod. Dyn., 2 (2008), 645.
doi: 10.3934/jmd.2008.2.645. |
[13] |
A. Gorodnik, Open problems in dynamics and related fields,, J. Mod. Dyn., 1 (2007), 1.
doi: 10.3934/jmd.2007.1.1. |
[14] |
M. R. Herman, Exemples de flots hamiltoniens dont aucune perturbation en topologie $C^\infty$ n'a d'orbites périodiques sur un ouvert de surfaces d'énergies,, (French) [Examples of Hamiltonian flows such that no $C\sp\infty$ perturbation has a periodic orbit on an open set of energy surfaces], 312 (1991), 989.
|
[15] |
S. Hurder, Rigidity of Anosov actions of higher rank lattices,, Ann. of Math., 135 (1992), 361.
doi: 10.2307/2946593. |
[16] |
B. Kalinin and A. Katok, Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori,, J. Mod. Dyn., 1 (2007), 123.
doi: 10.3934/jmd.2007.1.123. |
[17] |
B. Kalinin and V. Sadovskaya, Global rigidity for totally nonsymplectic Anosov $ Z^k$ actions, , Geom. Topol., 10 (2006), 929.
doi: 10.2140/gt.2006.10.929. |
[18] |
B. Kalinin and R. Spatzier, On the classification of Cartan Actions,, Geom. Funct. Anal., 17 (2007), 468.
doi: 10.1007/s00039-007-0602-2. |
[19] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', Encyclopedia of Mathematics and its Applications, (1995).
doi: 10.1017/CBO9780511809187. |
[20] |
A. Katok, S. Katok and K. Schmidt, Rigidity of measurable structures for $Z^d$-actions by automorphims of a torus, , Comment. Math. Helv., 77 (2002), 718.
doi: 10.1007/PL00012439. |
[21] |
A. Katok and J. W. Lewis, Local rigidity for certain groups of toral automorphisms,, Israel J. Math., 75 (1991), 203.
doi: 10.1007/BF02776025. |
[22] |
A. Katok and J. W. Lewis, Global rigidity results for lattice actions on tori and new examples of volume-preserving actions,, Israel J. Math., 93 (1996), 253.
doi: 10.1007/BF02776025. |
[23] |
H. Koch, A renormalization group for Hamiltonians, with applications to KAM tori,, Ergodic Theory Dynam. Systems, 19 (1999), 475.
doi: 10.1017/S0143385799130128. |
[24] |
A. N. Kolmogorov, On dynamical systems with an integral invariant on the torus,, Doklady Akad. Nauk SSSR (N.S.), 93 (1953), 763.
|
[25] |
R. de la LLave, Invariants of smooth conjugacy of hyperbolic dynamical systems II,, Comm. Math. Phys., 109 (1987), 369.
doi: 10.1007/BF01206141. |
[26] |
J. Lopes Dias, Renormalization of flows on the multidimensional torus close to a KT frequency vector,, Nonlinearity, 15 (2002), 647.
doi: 10.1088/0951-7715/15/3/307. |
[27] |
A. Manning, There are no new Anosov diffeomorphisms on tori,, Amer. J. Math., 96 (1974), 422.
doi: 10.2307/2373551. |
[28] |
K. R. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem,'', Applied Mathematical Sciences, (1992).
|
[29] |
S. E. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. J. Math., 92 (1970), 761.
doi: 10.2307/2373372. |
[30] |
J. Palis and J. C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori,, Ann. Sci. \'Ecole Norm. Sup., 22 (1989), 99.
|
[31] |
L. Perko, "Differential Equations and Dynamical Systems,'', Texts in Applied Mathematics, (1991).
|
[32] |
C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,'', 2$^{nd}$ edition, (1999).
|
[33] |
F. Rodriguez Hertz, Global rigidity of certain abelian actions by toral automorphisms,, J. Mod. Dyn., 1 (2007), 425.
doi: 10.3934/jmd.2007.1.425. |
[34] |
P. R. Sad, Centralizers of vector fields,, Topology, 18 (1979), 97.
doi: 10.1016/0040-9383(79)90027-2. |
[35] |
H. P. F. Swinnerton-Dyer, "A Brief Guide to Algebraic Number Theory,'', London Mathematical Society, (2001).
doi: 10.1017/CBO9781139173360. |
[36] |
D. I. Wallace, Conjugacy classes of hyperbolic matrices in $SL(n, Z)$ and ideal classes in an order, , Trans. Amer. Math. Soc., 283 (1984), 177.
doi: 10.1090/S0002-9947-1984-0735415-0. |
[37] |
S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,'', Texts in Applied Mathematics, (1990).
|
[38] |
F. W. Wilson, Jr., On the minimal sets of non-singular vector fields,, Ann. of Math., 84 (1966), 529.
doi: 10.2307/1970458. |
show all references
References:
[1] |
R. L. Adler and R. Palais, Homeomorphic conjugacy of automorphisms on the torus,, Proc. Amer. Math. Soc., 16 (1965), 1222.
doi: 10.1090/S0002-9939-1965-0193181-8. |
[2] |
L. F. Bakker, A reducible representation of the generalized symmetry group of a quasiperiodic flow,, in, (2003), 68.
|
[3] |
L. F. Bakker, Structure of group invariants of a quasiperiodic flow, , Electron. J. Differential Equations, 39 (2004), 1.
|
[4] |
L. F. Bakker, Rigidity of projective conjugacy of quasiperiodic flows of Koch type,, Colloq. Math., 112 (2008), 291.
doi: 10.4064/cm112-2-6. |
[5] |
L. F. Bakker and G. Conner, A class of generalized symmetries of smooth flows, , Commun. Pure Appl. Anal., 3 (2004), 183.
doi: 10.3934/cpaa.2004.3.183. |
[6] |
L. Barreira and Y. B. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory,'', University Lecture Series, (2002).
|
[7] |
D. Berend, Multi-invariant sets on tori, , Trans. Amer. Math. Soc., 280 (1983), 509.
doi: 10.1090/S0002-9947-1983-0716835-6. |
[8] |
D. Damjanović and A. Katok, Local rigidity of partially hyperbolic actions I. Kam method and $Z^k$ actions on the torus, , Ann. of Math., 172 (2010), 1805.
doi: 10.4007/annals.2010.172.1805. |
[9] |
K. Dekimpe, What is an infra-nilmanifold endomorphism?,, Notices Amer. Math. Soc., 58 (2011), 688.
|
[10] |
B. R. Fayad, Weak mixing for reparameterized linear flows on the torus,, Ergodic Theory Dynam. Systems, 22 (2002), 187.
doi: 10.1017/S0143385702000081. |
[11] |
B. R. Fayad, Analytic mixing reparameterizations of irrational flows,, Ergodic Theory Dynam. Systems, 22 (2002), 437.
doi: 10.1017/S0143385702000214. |
[12] |
A. Gogolev, Smooth conjugacy of Anosov diffeomorphisms on higher dimensional tori,, J. Mod. Dyn., 2 (2008), 645.
doi: 10.3934/jmd.2008.2.645. |
[13] |
A. Gorodnik, Open problems in dynamics and related fields,, J. Mod. Dyn., 1 (2007), 1.
doi: 10.3934/jmd.2007.1.1. |
[14] |
M. R. Herman, Exemples de flots hamiltoniens dont aucune perturbation en topologie $C^\infty$ n'a d'orbites périodiques sur un ouvert de surfaces d'énergies,, (French) [Examples of Hamiltonian flows such that no $C\sp\infty$ perturbation has a periodic orbit on an open set of energy surfaces], 312 (1991), 989.
|
[15] |
S. Hurder, Rigidity of Anosov actions of higher rank lattices,, Ann. of Math., 135 (1992), 361.
doi: 10.2307/2946593. |
[16] |
B. Kalinin and A. Katok, Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori,, J. Mod. Dyn., 1 (2007), 123.
doi: 10.3934/jmd.2007.1.123. |
[17] |
B. Kalinin and V. Sadovskaya, Global rigidity for totally nonsymplectic Anosov $ Z^k$ actions, , Geom. Topol., 10 (2006), 929.
doi: 10.2140/gt.2006.10.929. |
[18] |
B. Kalinin and R. Spatzier, On the classification of Cartan Actions,, Geom. Funct. Anal., 17 (2007), 468.
doi: 10.1007/s00039-007-0602-2. |
[19] |
A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', Encyclopedia of Mathematics and its Applications, (1995).
doi: 10.1017/CBO9780511809187. |
[20] |
A. Katok, S. Katok and K. Schmidt, Rigidity of measurable structures for $Z^d$-actions by automorphims of a torus, , Comment. Math. Helv., 77 (2002), 718.
doi: 10.1007/PL00012439. |
[21] |
A. Katok and J. W. Lewis, Local rigidity for certain groups of toral automorphisms,, Israel J. Math., 75 (1991), 203.
doi: 10.1007/BF02776025. |
[22] |
A. Katok and J. W. Lewis, Global rigidity results for lattice actions on tori and new examples of volume-preserving actions,, Israel J. Math., 93 (1996), 253.
doi: 10.1007/BF02776025. |
[23] |
H. Koch, A renormalization group for Hamiltonians, with applications to KAM tori,, Ergodic Theory Dynam. Systems, 19 (1999), 475.
doi: 10.1017/S0143385799130128. |
[24] |
A. N. Kolmogorov, On dynamical systems with an integral invariant on the torus,, Doklady Akad. Nauk SSSR (N.S.), 93 (1953), 763.
|
[25] |
R. de la LLave, Invariants of smooth conjugacy of hyperbolic dynamical systems II,, Comm. Math. Phys., 109 (1987), 369.
doi: 10.1007/BF01206141. |
[26] |
J. Lopes Dias, Renormalization of flows on the multidimensional torus close to a KT frequency vector,, Nonlinearity, 15 (2002), 647.
doi: 10.1088/0951-7715/15/3/307. |
[27] |
A. Manning, There are no new Anosov diffeomorphisms on tori,, Amer. J. Math., 96 (1974), 422.
doi: 10.2307/2373551. |
[28] |
K. R. Meyer and G. R. Hall, "Introduction to Hamiltonian Dynamical Systems and the $N$-Body Problem,'', Applied Mathematical Sciences, (1992).
|
[29] |
S. E. Newhouse, On codimension one Anosov diffeomorphisms,, Amer. J. Math., 92 (1970), 761.
doi: 10.2307/2373372. |
[30] |
J. Palis and J. C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori,, Ann. Sci. \'Ecole Norm. Sup., 22 (1989), 99.
|
[31] |
L. Perko, "Differential Equations and Dynamical Systems,'', Texts in Applied Mathematics, (1991).
|
[32] |
C. Robinson, "Dynamical Systems. Stability, Symbolic Dynamics, and Chaos,'', 2$^{nd}$ edition, (1999).
|
[33] |
F. Rodriguez Hertz, Global rigidity of certain abelian actions by toral automorphisms,, J. Mod. Dyn., 1 (2007), 425.
doi: 10.3934/jmd.2007.1.425. |
[34] |
P. R. Sad, Centralizers of vector fields,, Topology, 18 (1979), 97.
doi: 10.1016/0040-9383(79)90027-2. |
[35] |
H. P. F. Swinnerton-Dyer, "A Brief Guide to Algebraic Number Theory,'', London Mathematical Society, (2001).
doi: 10.1017/CBO9781139173360. |
[36] |
D. I. Wallace, Conjugacy classes of hyperbolic matrices in $SL(n, Z)$ and ideal classes in an order, , Trans. Amer. Math. Soc., 283 (1984), 177.
doi: 10.1090/S0002-9947-1984-0735415-0. |
[37] |
S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,'', Texts in Applied Mathematics, (1990).
|
[38] |
F. W. Wilson, Jr., On the minimal sets of non-singular vector fields,, Ann. of Math., 84 (1966), 529.
doi: 10.2307/1970458. |
[1] |
Dominic Veconi. Equilibrium states of almost Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 767-780. doi: 10.3934/dcds.2020061 |
[2] |
Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1 |
[3] |
L. Bakker, G. Conner. A class of generalized symmetries of smooth flows. Communications on Pure & Applied Analysis, 2004, 3 (2) : 183-195. doi: 10.3934/cpaa.2004.3.183 |
[4] |
João P. Almeida, Albert M. Fisher, Alberto Adrego Pinto, David A. Rand. Anosov diffeomorphisms. Conference Publications, 2013, 2013 (special) : 837-845. doi: 10.3934/proc.2013.2013.837 |
[5] |
Maria Carvalho. First homoclinic tangencies in the boundary of Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 765-782. doi: 10.3934/dcds.1998.4.765 |
[6] |
Matthieu Porte. Linear response for Dirac observables of Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1799-1819. doi: 10.3934/dcds.2019078 |
[7] |
Yong Fang. Thermodynamic invariants of Anosov flows and rigidity. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1185-1204. doi: 10.3934/dcds.2009.24.1185 |
[8] |
Omri M. Sarig. Bernoulli equilibrium states for surface diffeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 593-608. doi: 10.3934/jmd.2011.5.593 |
[9] |
Yong Fang. Rigidity of Hamenstädt metrics of Anosov flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1271-1278. doi: 10.3934/dcds.2016.36.1271 |
[10] |
Enoch Humberto Apaza Calla, Bulmer Mejia Garcia, Carlos Arnoldo Morales Rojas. Topological properties of sectional-Anosov flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4735-4741. doi: 10.3934/dcds.2015.35.4735 |
[11] |
Mário Bessa, Jorge Rocha. Three-dimensional conservative star flows are Anosov. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 839-846. doi: 10.3934/dcds.2010.26.839 |
[12] |
Oliver Butterley, Carlangelo Liverani. Smooth Anosov flows: Correlation spectra and stability. Journal of Modern Dynamics, 2007, 1 (2) : 301-322. doi: 10.3934/jmd.2007.1.301 |
[13] |
Mark Pollicott. Ergodicity of stable manifolds for nilpotent extensions of Anosov flows. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 599-604. doi: 10.3934/dcds.2002.8.599 |
[14] |
Andrey Gogolev. Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. Journal of Modern Dynamics, 2008, 2 (4) : 645-700. doi: 10.3934/jmd.2008.2.645 |
[15] |
Andrey Gogolev, Misha Guysinsky. $C^1$-differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 183-200. doi: 10.3934/dcds.2008.22.183 |
[16] |
Zemer Kosloff. On manifolds admitting stable type Ⅲ$_{\textbf1}$ Anosov diffeomorphisms. Journal of Modern Dynamics, 2018, 13: 251-270. doi: 10.3934/jmd.2018020 |
[17] |
Yong Fang. Quasiconformal Anosov flows and quasisymmetric rigidity of Hamenst$\ddot{a}$dt distances. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3471-3483. doi: 10.3934/dcds.2014.34.3471 |
[18] |
Artur O. Lopes, Vladimir A. Rosas, Rafael O. Ruggiero. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 403-422. doi: 10.3934/dcds.2007.17.403 |
[19] |
M. S. Bruzón, M. L. Gandarias, J. C. Camacho. Classical and nonclassical symmetries and exact solutions for a generalized Benjamin equation. Conference Publications, 2015, 2015 (special) : 151-158. doi: 10.3934/proc.2015.0151 |
[20] |
Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]