May  2013, 12(3): 1201-1220. doi: 10.3934/cpaa.2013.12.1201

Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data

1. 

Université Victor Ségalen - Bordeaux 2, 146 rue Léo Saignat, BP 26, 33076 Bordeaux

2. 

Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053, Blindern, NO-0316 Oslo, Norway

3. 

Ecole Centrale de nantes, Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, 1, rue de la Noé, 44321 Nantes

Received  September 2011 Revised  August 2012 Published  September 2012

We prove existence and regularity results for distributional solutions of nonlinear elliptic and parabolic equations with general anisotropic diffusivities with variable exponents. The data are assumed to be merely integrable.
Citation: Mostafa Bendahmane, Kenneth Hvistendahl Karlsen, Mazen Saad. Nonlinear anisotropic elliptic and parabolic equations with variable exponents and $L^1$ data. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1201-1220. doi: 10.3934/cpaa.2013.12.1201
References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth,, Arch. Rational Mech. Anal., 156 (2001), 121.   Google Scholar

[2]

M. Bendahmane, M. Langlais and M. Saad, On some anisotropic reaction-diffusion systems with $L^1$-data modeling the propagation of an epidemic disease,, Nonlinear Anal., 54 (2003), 617.   Google Scholar

[3]

M. Bendahmane and M. Saad, Entropy solutions for a nonlinear parabolic equation with variable exponents and L1 data,, Preprint., ().   Google Scholar

[4]

M. Bendahmane and P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and $L^1$-data,, Nonlinear Analysis TMA, 70 (2009), 567.  doi: http://dx.doi.org/10.1016/j.na.2007.12.027.  Google Scholar

[5]

M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 data,, Journal of Differential Equations, 249 (2010), 1483.  doi: DOI: 10.1016/j.jde.2010.05.011.  Google Scholar

[6]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data,, J. Funct. Anal., 87 (1989), 149.   Google Scholar

[7]

L. Boccardo, T. Gallouët and P. Marcellini, Anisotropic equations in $L^1$,, Differential Integral Equations, 9 (1996), 209.   Google Scholar

[8]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383.   Google Scholar

[9]

L. Diening, P. Hästö, T. Harjulehto and M. R.užička, "Lebesque and Sobolev Spaces with Variable Exponents,", Lecture Notes in Mathematics, (2017).   Google Scholar

[10]

X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, , J. Math. Anal. Appl., 262 (2001), 749.   Google Scholar

[11]

X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(U)$ and $W^{m, p(x)}(U)$,, J. Math. Anal. Appl., 263 (2001), 424.   Google Scholar

[12]

T. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values,, Potential Anal., 25 (2006), 205.   Google Scholar

[13]

O. Kovácik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1, p(x)}$,, Czech. Math. J., 41 (1991), 592.   Google Scholar

[14]

F. Li and H. Zhao, Anisotropic parabolic equations with measure data,, J. Partial Differential Equations, 14 (2001), 21.   Google Scholar

[15]

P. Marcelli, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions,, Arch. Ration. Mech. Anal., 105 (1989), 267.   Google Scholar

[16]

M. R.užička, "Electrorheological Fluids: Modeling and Mathematical Theory,", Lecture Notes in Mathematics, (2000).   Google Scholar

[17]

M. Sanchon and M. Urbano, Entropy solutions for the $p(x)$-Laplace equation,, Trans. American Math. Soc., 361 (2009), 6387.   Google Scholar

[18]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mathematica Pura Applicata, (1987), 65.   Google Scholar

[19]

M. Troisi, Teoremi di inclusione per spazi di sobolev non isotropi,, Ricerche. Mat., 18 (1969), 3.   Google Scholar

[20]

V. V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), 67.   Google Scholar

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth,, Arch. Rational Mech. Anal., 156 (2001), 121.   Google Scholar

[2]

M. Bendahmane, M. Langlais and M. Saad, On some anisotropic reaction-diffusion systems with $L^1$-data modeling the propagation of an epidemic disease,, Nonlinear Anal., 54 (2003), 617.   Google Scholar

[3]

M. Bendahmane and M. Saad, Entropy solutions for a nonlinear parabolic equation with variable exponents and L1 data,, Preprint., ().   Google Scholar

[4]

M. Bendahmane and P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and $L^1$-data,, Nonlinear Analysis TMA, 70 (2009), 567.  doi: http://dx.doi.org/10.1016/j.na.2007.12.027.  Google Scholar

[5]

M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1 data,, Journal of Differential Equations, 249 (2010), 1483.  doi: DOI: 10.1016/j.jde.2010.05.011.  Google Scholar

[6]

L. Boccardo and T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data,, J. Funct. Anal., 87 (1989), 149.   Google Scholar

[7]

L. Boccardo, T. Gallouët and P. Marcellini, Anisotropic equations in $L^1$,, Differential Integral Equations, 9 (1996), 209.   Google Scholar

[8]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383.   Google Scholar

[9]

L. Diening, P. Hästö, T. Harjulehto and M. R.užička, "Lebesque and Sobolev Spaces with Variable Exponents,", Lecture Notes in Mathematics, (2017).   Google Scholar

[10]

X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, , J. Math. Anal. Appl., 262 (2001), 749.   Google Scholar

[11]

X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(U)$ and $W^{m, p(x)}(U)$,, J. Math. Anal. Appl., 263 (2001), 424.   Google Scholar

[12]

T. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values,, Potential Anal., 25 (2006), 205.   Google Scholar

[13]

O. Kovácik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{1, p(x)}$,, Czech. Math. J., 41 (1991), 592.   Google Scholar

[14]

F. Li and H. Zhao, Anisotropic parabolic equations with measure data,, J. Partial Differential Equations, 14 (2001), 21.   Google Scholar

[15]

P. Marcelli, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions,, Arch. Ration. Mech. Anal., 105 (1989), 267.   Google Scholar

[16]

M. R.užička, "Electrorheological Fluids: Modeling and Mathematical Theory,", Lecture Notes in Mathematics, (2000).   Google Scholar

[17]

M. Sanchon and M. Urbano, Entropy solutions for the $p(x)$-Laplace equation,, Trans. American Math. Soc., 361 (2009), 6387.   Google Scholar

[18]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mathematica Pura Applicata, (1987), 65.   Google Scholar

[19]

M. Troisi, Teoremi di inclusione per spazi di sobolev non isotropi,, Ricerche. Mat., 18 (1969), 3.   Google Scholar

[20]

V. V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), 67.   Google Scholar

[1]

Mostafa Bendahmane, Kenneth H. Karlsen. Renormalized solutions of an anisotropic reaction-diffusion-advection system with $L^1$ data. Communications on Pure & Applied Analysis, 2006, 5 (4) : 733-762. doi: 10.3934/cpaa.2006.5.733

[2]

Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3689-3711. doi: 10.3934/dcdsb.2018311

[3]

C. García Vázquez, Francisco Ortegón Gallego. On certain nonlinear parabolic equations with singular diffusion and data in $L^1$. Communications on Pure & Applied Analysis, 2005, 4 (3) : 589-612. doi: 10.3934/cpaa.2005.4.589

[4]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[5]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[6]

Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663

[7]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715

[8]

Inbo Sim, Yun-Ho Kim. Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents. Conference Publications, 2013, 2013 (special) : 695-707. doi: 10.3934/proc.2013.2013.695

[9]

M. Sango. Weak solutions for a doubly degenerate quasilinear parabolic equation with random forcing. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 885-905. doi: 10.3934/dcdsb.2007.7.885

[10]

Rosaria Di Nardo. Nonlinear parabolic equations with a lower order term and $L^1$ data. Communications on Pure & Applied Analysis, 2010, 9 (4) : 929-942. doi: 10.3934/cpaa.2010.9.929

[11]

Ramzi Alsaedi. Perturbation effects for the minimal surface equation with multiple variable exponents. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 139-150. doi: 10.3934/dcdss.2019010

[12]

Md. Rabiul Haque, Takayoshi Ogawa, Ryuichi Sato. Existence of weak solutions to a convection–diffusion equation in a uniformly local lebesgue space. Communications on Pure & Applied Analysis, 2020, 19 (2) : 677-697. doi: 10.3934/cpaa.2020031

[13]

Chérif Amrouche, Huy Hoang Nguyen. Elliptic problems with $L^1$-data in the half-space. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 369-397. doi: 10.3934/dcdss.2012.5.369

[14]

Takahiro Hashimoto. Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. Conference Publications, 2009, 2009 (Special) : 349-358. doi: 10.3934/proc.2009.2009.349

[15]

Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1

[16]

Maria-Magdalena Boureanu, Cristian Udrea. No--flux boundary value problems with anisotropic variable exponents. Communications on Pure & Applied Analysis, 2015, 14 (3) : 881-896. doi: 10.3934/cpaa.2015.14.881

[17]

Xueke Pu, Boling Guo, Jingjun Zhang. Global weak solutions to the 1-D fractional Landau-Lifshitz equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 199-207. doi: 10.3934/dcdsb.2010.14.199

[18]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[19]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[20]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (5)

[Back to Top]