    • Previous Article
On vector solutions for coupled nonlinear Schrödinger equations with critical exponents
• CPAA Home
• This Issue
• Next Article
On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent
May  2013, 12(3): 1243-1257. doi: 10.3934/cpaa.2013.12.1243

## Infinite multiplicity for an inhomogeneous supercritical problem in entire space

 1 Department of mathematics, East China Normal University, 500 Dong Chuan Road, Shanghai 200241 2 Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received  December 2011 Revised  July 2012 Published  September 2012

Let $K(x)$ be a positive function in $R^N, N \geq 3$ and satisfy $\lim\limits_{|x|\rightarrow \infty} K(x) = K_\infty$ where $K_\infty$ is a positive constant. When $p > \frac{N + 1}{N - 3}, N \geq 4$, we prove the existence of infinitely many positive solutions to the following supercritical problem: \begin{eqnarray*} \Delta u(x) + K(x)u^p = 0, u>0 \quad in \quad R^N, \lim_{|x|\rightarrow \infty} u(x) = 0. \end{eqnarray*} If in addition we have, for instance, $\lim\limits_{|x| \rightarrow \infty}|x|^\mu (K(x) - K_\infty ) = C_0 \neq 0, 0 < \mu \leq N - \frac{2p+2}{p-1}$, then this result still holds provided that $p > \frac{N + 2}{N - 2}$.
Citation: Liping Wang, Juncheng Wei. Infinite multiplicity for an inhomogeneous supercritical problem in entire space. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1243-1257. doi: 10.3934/cpaa.2013.12.1243
##### References:
  S. Bae, Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in $\mathbb{R}^{n}$, J. Diff. Eqns., 200 (2004), 274-311. doi: 10.1016/j.jde.2003.11.006.   G. Bernard, An inhomogeneous semilinear equation in entire space, J. Differential Equations, 125 (1996), 184-214. doi: 10.1006/jdeq.1996.0029.   S. Bae and W.-M. Ni, Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equationon $R^n$, Math. Ann., 320 (2001), 191-210. doi: 10.1007/PL00004468.   J. Dávila, M. del Pino and M. Musso, The supercritical Lane-Emden-Fowler equation in exterior domains, Commun. Part. Diff. Equations, 32 (2007), 1225-1243. doi: 10.1080/03605300600854209.   J. Dávila, M. Del Pino, M. Musso and J. Wei, Standing waves for supercritical nonlinear Schrödinger equations, J. Differential Equations, 236 (2007), 164-198. doi: 10.1016/j.jde.2007.01.016.   W.-Y. Ding and W.-M. Ni, On the elliptic equation $\Delta u + Ku^{\frac{N + 2}{N - 2}} = 0$ and related topics, Duke Math. J., 52 (1985), 485-506. doi: 10.1215/S0012-7094-85-05224-X.   C.-F. Gui, Positive entire solutions of equation $\Delta u + f(x, u) = 0$, J. Diff. Eqns., 99 (1992), 245-280. doi: 10.1016/0022-0396(92)90023-G.   C.-F. Gui, On positive entire solutions of the elliptic equation $\Delta u+K(x) u^p=0$ and its applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 225-237. doi: 10.1017/S0308210500022708.   C.-F. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat euqation in $R^N$, Comm. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906.   Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u+ K(x) u^p=0$ in $R^n$, J. Differential Equations, 95 (1992), 304-330. doi: 10.1016/0022-0396(92)90034-K.   X.-F. Wang and J.-C. Wei, On the equation $\Delta u +Ku^{\frac{N+ 2}{N - 2} \pm \epsilon^2} = 0$ in $R^n$, Rend. Circ. Mat. Palermo, 44 (1995), 365-400. doi: 10.1007/BF02844676.   E. Yanagida and S. Yotsutani, Classification of the structure of positive radial solutions to $\Delta u + K(|x|) u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 124 (1993), 239-259. doi: 10.1007/BF00953068.   show all references

##### References:
  S. Bae, Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in $\mathbb{R}^{n}$, J. Diff. Eqns., 200 (2004), 274-311. doi: 10.1016/j.jde.2003.11.006.   G. Bernard, An inhomogeneous semilinear equation in entire space, J. Differential Equations, 125 (1996), 184-214. doi: 10.1006/jdeq.1996.0029.   S. Bae and W.-M. Ni, Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equationon $R^n$, Math. Ann., 320 (2001), 191-210. doi: 10.1007/PL00004468.   J. Dávila, M. del Pino and M. Musso, The supercritical Lane-Emden-Fowler equation in exterior domains, Commun. Part. Diff. Equations, 32 (2007), 1225-1243. doi: 10.1080/03605300600854209.   J. Dávila, M. Del Pino, M. Musso and J. Wei, Standing waves for supercritical nonlinear Schrödinger equations, J. Differential Equations, 236 (2007), 164-198. doi: 10.1016/j.jde.2007.01.016.   W.-Y. Ding and W.-M. Ni, On the elliptic equation $\Delta u + Ku^{\frac{N + 2}{N - 2}} = 0$ and related topics, Duke Math. J., 52 (1985), 485-506. doi: 10.1215/S0012-7094-85-05224-X.   C.-F. Gui, Positive entire solutions of equation $\Delta u + f(x, u) = 0$, J. Diff. Eqns., 99 (1992), 245-280. doi: 10.1016/0022-0396(92)90023-G.   C.-F. Gui, On positive entire solutions of the elliptic equation $\Delta u+K(x) u^p=0$ and its applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 225-237. doi: 10.1017/S0308210500022708.   C.-F. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat euqation in $R^N$, Comm. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906.   Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u+ K(x) u^p=0$ in $R^n$, J. Differential Equations, 95 (1992), 304-330. doi: 10.1016/0022-0396(92)90034-K.   X.-F. Wang and J.-C. Wei, On the equation $\Delta u +Ku^{\frac{N+ 2}{N - 2} \pm \epsilon^2} = 0$ in $R^n$, Rend. Circ. Mat. Palermo, 44 (1995), 365-400. doi: 10.1007/BF02844676.   E. Yanagida and S. Yotsutani, Classification of the structure of positive radial solutions to $\Delta u + K(|x|) u^p=0$ in $R^n$, Arch. Rational Mech. Anal., 124 (1993), 239-259. doi: 10.1007/BF00953068.   Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005  Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136  Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50  Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková. Sharp Sobolev type embeddings on the entire Euclidean space. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2011-2037. doi: 10.3934/cpaa.2018096  Yajing Zhang, Jianghao Hao. Existence of positive entire solutions for semilinear elliptic systems in the whole space. Communications on Pure and Applied Analysis, 2009, 8 (2) : 719-724. doi: 10.3934/cpaa.2009.8.719  Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364  Peter Poláčik, Darío A. Valdebenito. Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1369-1393. doi: 10.3934/dcdss.2020077  Mrinal Kanti Roychowdhury. Quantization coefficients for ergodic measures on infinite symbolic space. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2829-2846. doi: 10.3934/dcds.2014.34.2829  Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217  Shuichi Jimbo, Yoshihisa Morita. Asymptotic behavior of entire solutions to reaction-diffusion equations in an infinite star graph. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4013-4039. doi: 10.3934/dcds.2021026  Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 653-670. doi: 10.3934/dcds.1998.4.653  Jianing Chen, Bixiang Wang. Random attractors of supercritical wave equations driven by infinite-dimensional additive noise on $\mathbb{R}^n$. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022093  Yanheng Ding, Xiaojing Dong, Qi Guo. On multiplicity of semi-classical solutions to nonlinear Dirac equations of space-dimension $n$. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4105-4123. doi: 10.3934/dcds.2021030  Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2271-2292. doi: 10.3934/dcdsb.2019227  Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379  Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773  Boris Kruglikov, Martin Rypdal. Entropy via multiplicity. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 395-410. doi: 10.3934/dcds.2006.16.395  Giuseppina Autuori, Patrizia Pucci. Entire solutions of nonlocal elasticity models for composite materials. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 357-377. doi: 10.3934/dcdss.2018020  Agnieszka Badeńska. No entire function with real multipliers in class $\mathcal{S}$. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3321-3327. doi: 10.3934/dcds.2013.33.3321  Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335

2021 Impact Factor: 1.273