• Previous Article
    On vector solutions for coupled nonlinear Schrödinger equations with critical exponents
  • CPAA Home
  • This Issue
  • Next Article
    On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent
May  2013, 12(3): 1243-1257. doi: 10.3934/cpaa.2013.12.1243

Infinite multiplicity for an inhomogeneous supercritical problem in entire space

1. 

Department of mathematics, East China Normal University, 500 Dong Chuan Road, Shanghai 200241

2. 

Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received  December 2011 Revised  July 2012 Published  September 2012

Let $K(x)$ be a positive function in $R^N, N \geq 3$ and satisfy $\lim\limits_{|x|\rightarrow \infty} K(x) = K_\infty$ where $K_\infty$ is a positive constant. When $p > \frac{N + 1}{N - 3}, N \geq 4$, we prove the existence of infinitely many positive solutions to the following supercritical problem: \begin{eqnarray*} \Delta u(x) + K(x)u^p = 0, u>0 \quad in \quad R^N, \lim_{|x|\rightarrow \infty} u(x) = 0. \end{eqnarray*} If in addition we have, for instance, $\lim\limits_{|x| \rightarrow \infty}|x|^\mu (K(x) - K_\infty ) = C_0 \neq 0, 0 < \mu \leq N - \frac{2p+2}{p-1}$, then this result still holds provided that $p > \frac{N + 2}{N - 2}$.
Citation: Liping Wang, Juncheng Wei. Infinite multiplicity for an inhomogeneous supercritical problem in entire space. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1243-1257. doi: 10.3934/cpaa.2013.12.1243
References:
[1]

S. Bae, Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in $\R^n$,, J. Diff. Eqns., 200 (2004), 274.  doi: 10.1016/j.jde.2003.11.006.  Google Scholar

[2]

G. Bernard, An inhomogeneous semilinear equation in entire space,, J. Differential Equations, 125 (1996), 184.  doi: 10.1006/jdeq.1996.0029.  Google Scholar

[3]

S. Bae and W.-M. Ni, Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equationon $R^n$,, Math. Ann., 320 (2001), 191.  doi: 10.1007/PL00004468.  Google Scholar

[4]

J. Dávila, M. del Pino and M. Musso, The supercritical Lane-Emden-Fowler equation in exterior domains, Commun. Part. Diff. Equations,, \textbf{32} (2007), 32 (2007), 1225.  doi: 10.1080/03605300600854209.  Google Scholar

[5]

J. Dávila, M. Del Pino, M. Musso and J. Wei, Standing waves for supercritical nonlinear Schrödinger equations,, J. Differential Equations, 236 (2007), 164.  doi: 10.1016/j.jde.2007.01.016.  Google Scholar

[6]

W.-Y. Ding and W.-M. Ni, On the elliptic equation $\Delta u + Ku^{\frac{N + 2}{N - 2}} = 0$ and related topics, , Duke Math. J., 52 (1985), 485.  doi: 10.1215/S0012-7094-85-05224-X.  Google Scholar

[7]

C.-F. Gui, Positive entire solutions of equation $\Delta u + f(x, u) = 0$,, J. Diff. Eqns., 99 (1992), 245.  doi: 10.1016/0022-0396(92)90023-G.  Google Scholar

[8]

C.-F. Gui, On positive entire solutions of the elliptic equation $\Delta u+K(x) u^p=0$ and its applications to Riemannian geometry,, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 225.  doi: 10.1017/S0308210500022708.  Google Scholar

[9]

C.-F. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat euqation in $R^N$,, Comm. Pure Appl. Math., 45 (1992), 1153.  doi: 10.1002/cpa.3160450906.  Google Scholar

[10]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u+ K(x) u^p=0$ in $R^n$,, J. Differential Equations, 95 (1992), 304.  doi: 10.1016/0022-0396(92)90034-K.  Google Scholar

[11]

X.-F. Wang and J.-C. Wei, On the equation $\Delta u +Ku^{\frac{N+ 2}{N - 2} \pm \epsilon^2} = 0$ in $R^n$, , Rend. Circ. Mat. Palermo, 44 (1995), 365.  doi: 10.1007/BF02844676.  Google Scholar

[12]

E. Yanagida and S. Yotsutani, Classification of the structure of positive radial solutions to $\Delta u + K(|x|) u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 124 (1993), 239.  doi: 10.1007/BF00953068.  Google Scholar

show all references

References:
[1]

S. Bae, Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in $\R^n$,, J. Diff. Eqns., 200 (2004), 274.  doi: 10.1016/j.jde.2003.11.006.  Google Scholar

[2]

G. Bernard, An inhomogeneous semilinear equation in entire space,, J. Differential Equations, 125 (1996), 184.  doi: 10.1006/jdeq.1996.0029.  Google Scholar

[3]

S. Bae and W.-M. Ni, Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equationon $R^n$,, Math. Ann., 320 (2001), 191.  doi: 10.1007/PL00004468.  Google Scholar

[4]

J. Dávila, M. del Pino and M. Musso, The supercritical Lane-Emden-Fowler equation in exterior domains, Commun. Part. Diff. Equations,, \textbf{32} (2007), 32 (2007), 1225.  doi: 10.1080/03605300600854209.  Google Scholar

[5]

J. Dávila, M. Del Pino, M. Musso and J. Wei, Standing waves for supercritical nonlinear Schrödinger equations,, J. Differential Equations, 236 (2007), 164.  doi: 10.1016/j.jde.2007.01.016.  Google Scholar

[6]

W.-Y. Ding and W.-M. Ni, On the elliptic equation $\Delta u + Ku^{\frac{N + 2}{N - 2}} = 0$ and related topics, , Duke Math. J., 52 (1985), 485.  doi: 10.1215/S0012-7094-85-05224-X.  Google Scholar

[7]

C.-F. Gui, Positive entire solutions of equation $\Delta u + f(x, u) = 0$,, J. Diff. Eqns., 99 (1992), 245.  doi: 10.1016/0022-0396(92)90023-G.  Google Scholar

[8]

C.-F. Gui, On positive entire solutions of the elliptic equation $\Delta u+K(x) u^p=0$ and its applications to Riemannian geometry,, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 225.  doi: 10.1017/S0308210500022708.  Google Scholar

[9]

C.-F. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat euqation in $R^N$,, Comm. Pure Appl. Math., 45 (1992), 1153.  doi: 10.1002/cpa.3160450906.  Google Scholar

[10]

Y. Li, Asymptotic behavior of positive solutions of equation $\Delta u+ K(x) u^p=0$ in $R^n$,, J. Differential Equations, 95 (1992), 304.  doi: 10.1016/0022-0396(92)90034-K.  Google Scholar

[11]

X.-F. Wang and J.-C. Wei, On the equation $\Delta u +Ku^{\frac{N+ 2}{N - 2} \pm \epsilon^2} = 0$ in $R^n$, , Rend. Circ. Mat. Palermo, 44 (1995), 365.  doi: 10.1007/BF02844676.  Google Scholar

[12]

E. Yanagida and S. Yotsutani, Classification of the structure of positive radial solutions to $\Delta u + K(|x|) u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 124 (1993), 239.  doi: 10.1007/BF00953068.  Google Scholar

[1]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[2]

Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50

[3]

Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková. Sharp Sobolev type embeddings on the entire Euclidean space. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2011-2037. doi: 10.3934/cpaa.2018096

[4]

Yajing Zhang, Jianghao Hao. Existence of positive entire solutions for semilinear elliptic systems in the whole space. Communications on Pure & Applied Analysis, 2009, 8 (2) : 719-724. doi: 10.3934/cpaa.2009.8.719

[5]

Peter Poláčik, Darío A. Valdebenito. Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-25. doi: 10.3934/dcdss.2020077

[6]

Mrinal Kanti Roychowdhury. Quantization coefficients for ergodic measures on infinite symbolic space. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2829-2846. doi: 10.3934/dcds.2014.34.2829

[7]

Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217

[8]

Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 653-670. doi: 10.3934/dcds.1998.4.653

[9]

Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019227

[10]

Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379

[11]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[12]

Boris Kruglikov, Martin Rypdal. Entropy via multiplicity. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 395-410. doi: 10.3934/dcds.2006.16.395

[13]

Giuseppina Autuori, Patrizia Pucci. Entire solutions of nonlocal elasticity models for composite materials. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 357-377. doi: 10.3934/dcdss.2018020

[14]

Agnieszka Badeńska. No entire function with real multipliers in class $\mathcal{S}$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3321-3327. doi: 10.3934/dcds.2013.33.3321

[15]

Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335

[16]

Wan-Tong Li, Li Zhang, Guo-Bao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1531-1560. doi: 10.3934/dcds.2015.35.1531

[17]

Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 115-137. doi: 10.3934/dcds.2008.20.115

[18]

Yu-Juan Sun, Li Zhang, Wan-Tong Li, Zhi-Cheng Wang. Entire solutions in nonlocal monostable equations: Asymmetric case. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1049-1072. doi: 10.3934/cpaa.2019051

[19]

Manuel del Pino, Jean Dolbeault, Monica Musso. Multiple bubbling for the exponential nonlinearity in the slightly supercritical case. Communications on Pure & Applied Analysis, 2006, 5 (3) : 463-482. doi: 10.3934/cpaa.2006.5.463

[20]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]