January  2013, 12(1): 125-155. doi: 10.3934/cpaa.2013.12.125

A refined result on sign changing solutions for a critical elliptic problem

1. 

Laboratoire d'Analyse et de Mathématiques Appliquées, CNRS UMR 8050, Département de Mathématiques, Université Paris Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France

2. 

Departamento de Matemática, Pontificia Universidad Catolica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago

3. 

Dipartimento di Metodi e Modelli Matematici, Università di Roma "La Sapienza", Via Scarpa, 16 - 00166 Roma

4. 

University of Washington

Received  January 2011 Revised  April 2012 Published  September 2012

In this work, we consider sign changing solutions to the critical elliptic problem $\Delta u + |u|^{\frac{4}{N-2}}u = 0$ in $\Omega_\varepsilon$ and $u=0$ on $\partial\Omega_\varepsilon$, where $\Omega_\varepsilon:=\Omega-\left(\bigcup_{i=1}^m (a_i+\varepsilon\Omega_i)\right)$ for small parameter $\varepsilon>0$ is a perforated domain, $\Omega$ and $\Omega_i$ with $0\in \Omega_i$ ($\forall i=1,\cdots,m$) are bounded regular general domains without symmetry in $\mathbb{R}^N$ and $a_i$ are points in $\Omega$ for all $i=1,\cdots,m$. As $\varepsilon$ goes to zero, we construct by gluing method solutions with multiple blow up at each point $a_i$ for all $i=1,\cdots,m$.
Citation: Yuxin Ge, Monica Musso, A. Pistoia, Daniel Pollack. A refined result on sign changing solutions for a critical elliptic problem. Communications on Pure and Applied Analysis, 2013, 12 (1) : 125-155. doi: 10.3934/cpaa.2013.12.125
References:
[1]

A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294. doi: 10.1002/cpa.3160410302.

[2]

A. Bahri, Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differ. Equ., 3 (1995), 67-93. doi: 10.1007/BF01190892.

[3]

T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations, Top. Meth. Nonlin. Anal., 22 (2003), 1-14.

[4]

T. Bartsch, A. M. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Partial Differential Equationsm, 26 (2006), 265-282. doi: 10.1007/s00526-006-0004-6.

[5]

H. Brezis and L. Nirenberg, Positive solutions of non linear elliptic equations involving critical Sobolev expronents, Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.

[6]

A. Byde, Gluing theorems for constant scalar curvature manifolds, Indiana Univ. Math. J., 52 (2003), 1147-1199. doi: 10.1512/iumj.2003.52.2109.

[7]

M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric domain, Calc. Var. Partial Differential Equations, 21 (2004), 1-14. doi: 10.1007/s00526-003-0241-x.

[8]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGill-Hill, New York, 1955.

[9]

J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sr. I Math., 299 (1984), 209-212.

[10]

M. del Pino, J. Dolbeault and M. Musso, "Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Differ. Equation, 193 (2003), 280-306. doi: 10.1016/S0022-0396(03)00151-7.

[11]

M. del Pino, J. Dolbeault and M. Musso, The Brezis-Nirenberg problem near criticality in dimension 3, J. Math. Pures Appl., 83 (2004), 1405-1456. doi: 10.1016/j.matpur.2004.02.007.

[12]

M. del Pino, M. Musso and A. Pistoia, Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 45-82. doi: 10.1016/j.anihpc.2004.05.001.

[13]

M. del Pino, P. Felmer and M. Musso, Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differ. Equation, 182 (2002), 511-540. doi: 10.1006/jdeq.2001.4098.

[14]

M. del Pino, P. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Soc., 35 (2003), 513-521. doi: 10.1112/S0024609303001942.

[15]

Y. Ge, R. Jing and F. Pacard, Bubble towers for supercritical semilinear elliptic equations, J. Funct. Anal., 221 (2005), 251-302. doi: 10.1016/j.jfa.2004.09.011.

[16]

Y. Ge, R. Jing and F. Zhou, Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains, DCDS-A, 17 (2007), 751-770. doi: 10.3934/dcds.2007.17.751.

[17]

Y. Ge, M. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains, Communications in Partial Differential Equations, 35 (2010), 1419-1457. doi: 10.1080/03605302.2010.490286.

[18]

E. Hebey and M. Vaugon, Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth, J. Funct. Anal., 119 (1994), 298-318. doi: 10.1006/jfan.1994.1012.

[19]

J. Kazdan, F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597. doi: 10.1002/cpa.3160280502.

[20]

Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I., J. Differ. Equations, 120 (1995), 319-410. doi: 10.1006/jdeq.1995.1115.

[21]

R. Mazzeo and F. Pacard, Constant scalar curvature metrics with isolated singularities, J. Duke Math., 99 (1999), 353-418. doi: 10.1215/S0012-7094-99-09913-1.

[22]

A. M. Micheletti and A. Pistoia, On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical and supercritical growth, Nonlinearity, 17 (2004), 851-866. doi: 10.1088/0951-7715/17/3/007.

[23]

M. Musso and A. Pistoia, Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains, J. Math. Pures Appl., 86 (2006), 510-528. doi: 10.1016/j.matpur.2006.10.006.

[24]

M. Musso and A. Pistoia, Sign changing solutions to a Bahri-Coron's problem in pierced domains, Discrete Contin. Dyn. Syst., 21 (2008), 295-306. doi: 10.3934/dcds.2008.21.295.

[25]

M. Musso and A. Pistoia, Persistence of Coron's solution in nearly critical problems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 6 (2007), 331-357.

[26]

M. Musso and A. Pistoia, Tower of Bubbles for almost critical problems in general domains, J. Math. Pure Appl., 93 (2010), 1-40. doi: 10.1016/j.matpur.2009.08.001.

[27]

F. Pacard and T. Rivière, "Linear and Nonlinear Aspects of Vortices. The Ginzburg-Landau Model," Progress in Nonlinear Differential Equations and their Applications, 39 Boston, Birkhäuser, 2000. doi: 10.1007/978-1-4612-1386-4.

[28]

A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340. doi: 10.1016/j.anihpc.2006.03.002.

[29]

S. I. Pohozaev, Eigenfunction of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.

[30]

O. Rey, On a variational problem with lack of compactness: the effect of small holes in the domain, C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), 349-352.

[31]

O. Rey, The role of the Green function in a nonlinear elliptic equation involving the critical Sobolev exponetion, J. Funct. Anal., 89 (1990), 1-52. doi: 10.1016/0022-1236(90)90002-3.

show all references

References:
[1]

A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41 (1988), 253-294. doi: 10.1002/cpa.3160410302.

[2]

A. Bahri, Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differ. Equ., 3 (1995), 67-93. doi: 10.1007/BF01190892.

[3]

T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations, Top. Meth. Nonlin. Anal., 22 (2003), 1-14.

[4]

T. Bartsch, A. M. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Partial Differential Equationsm, 26 (2006), 265-282. doi: 10.1007/s00526-006-0004-6.

[5]

H. Brezis and L. Nirenberg, Positive solutions of non linear elliptic equations involving critical Sobolev expronents, Comm. Pure Appl. Math., 36 (1983), 437-477. doi: 10.1002/cpa.3160360405.

[6]

A. Byde, Gluing theorems for constant scalar curvature manifolds, Indiana Univ. Math. J., 52 (2003), 1147-1199. doi: 10.1512/iumj.2003.52.2109.

[7]

M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric domain, Calc. Var. Partial Differential Equations, 21 (2004), 1-14. doi: 10.1007/s00526-003-0241-x.

[8]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGill-Hill, New York, 1955.

[9]

J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sr. I Math., 299 (1984), 209-212.

[10]

M. del Pino, J. Dolbeault and M. Musso, "Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Differ. Equation, 193 (2003), 280-306. doi: 10.1016/S0022-0396(03)00151-7.

[11]

M. del Pino, J. Dolbeault and M. Musso, The Brezis-Nirenberg problem near criticality in dimension 3, J. Math. Pures Appl., 83 (2004), 1405-1456. doi: 10.1016/j.matpur.2004.02.007.

[12]

M. del Pino, M. Musso and A. Pistoia, Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 45-82. doi: 10.1016/j.anihpc.2004.05.001.

[13]

M. del Pino, P. Felmer and M. Musso, Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differ. Equation, 182 (2002), 511-540. doi: 10.1006/jdeq.2001.4098.

[14]

M. del Pino, P. Felmer and M. Musso, Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries, Bull. London Math. Soc., 35 (2003), 513-521. doi: 10.1112/S0024609303001942.

[15]

Y. Ge, R. Jing and F. Pacard, Bubble towers for supercritical semilinear elliptic equations, J. Funct. Anal., 221 (2005), 251-302. doi: 10.1016/j.jfa.2004.09.011.

[16]

Y. Ge, R. Jing and F. Zhou, Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains, DCDS-A, 17 (2007), 751-770. doi: 10.3934/dcds.2007.17.751.

[17]

Y. Ge, M. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains, Communications in Partial Differential Equations, 35 (2010), 1419-1457. doi: 10.1080/03605302.2010.490286.

[18]

E. Hebey and M. Vaugon, Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth, J. Funct. Anal., 119 (1994), 298-318. doi: 10.1006/jfan.1994.1012.

[19]

J. Kazdan, F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math., 28 (1975), 567-597. doi: 10.1002/cpa.3160280502.

[20]

Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I., J. Differ. Equations, 120 (1995), 319-410. doi: 10.1006/jdeq.1995.1115.

[21]

R. Mazzeo and F. Pacard, Constant scalar curvature metrics with isolated singularities, J. Duke Math., 99 (1999), 353-418. doi: 10.1215/S0012-7094-99-09913-1.

[22]

A. M. Micheletti and A. Pistoia, On the effect of the domain geometry on the existence of sign changing solutions to elliptic problems with critical and supercritical growth, Nonlinearity, 17 (2004), 851-866. doi: 10.1088/0951-7715/17/3/007.

[23]

M. Musso and A. Pistoia, Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains, J. Math. Pures Appl., 86 (2006), 510-528. doi: 10.1016/j.matpur.2006.10.006.

[24]

M. Musso and A. Pistoia, Sign changing solutions to a Bahri-Coron's problem in pierced domains, Discrete Contin. Dyn. Syst., 21 (2008), 295-306. doi: 10.3934/dcds.2008.21.295.

[25]

M. Musso and A. Pistoia, Persistence of Coron's solution in nearly critical problems, Ann. Sc. Norm. Super. Pisa Cl. Sci., 6 (2007), 331-357.

[26]

M. Musso and A. Pistoia, Tower of Bubbles for almost critical problems in general domains, J. Math. Pure Appl., 93 (2010), 1-40. doi: 10.1016/j.matpur.2009.08.001.

[27]

F. Pacard and T. Rivière, "Linear and Nonlinear Aspects of Vortices. The Ginzburg-Landau Model," Progress in Nonlinear Differential Equations and their Applications, 39 Boston, Birkhäuser, 2000. doi: 10.1007/978-1-4612-1386-4.

[28]

A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340. doi: 10.1016/j.anihpc.2006.03.002.

[29]

S. I. Pohozaev, Eigenfunction of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.

[30]

O. Rey, On a variational problem with lack of compactness: the effect of small holes in the domain, C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), 349-352.

[31]

O. Rey, The role of the Green function in a nonlinear elliptic equation involving the critical Sobolev exponetion, J. Funct. Anal., 89 (1990), 1-52. doi: 10.1016/0022-1236(90)90002-3.

[1]

M. L. Miotto. Multiple solutions for elliptic problem in $\mathbb{R}^N$ with critical Sobolev exponent and weight function. Communications on Pure and Applied Analysis, 2010, 9 (1) : 233-248. doi: 10.3934/cpaa.2010.9.233

[2]

Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941

[3]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[4]

Salomón Alarcón. Multiple solutions for a critical nonhomogeneous elliptic problem in domains with small holes. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1269-1289. doi: 10.3934/cpaa.2009.8.1269

[5]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[6]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[7]

Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25.

[8]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[9]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[10]

Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443

[11]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[12]

Xiaomei Sun, Yimin Zhang. Elliptic equations with cylindrical potential and multiple critical exponents. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1943-1957. doi: 10.3934/cpaa.2013.12.1943

[13]

Monica Musso, Donato Passaseo. Multiple solutions of Neumann elliptic problems with critical nonlinearity. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 301-320. doi: 10.3934/dcds.1999.5.301

[14]

Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure and Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715

[15]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[16]

Can Gao, Joachim Krieger. Optimal polynomial blow up range for critical wave maps. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1705-1741. doi: 10.3934/cpaa.2015.14.1705

[17]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[18]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[19]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[20]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]