-
Previous Article
An anisotropic regularity criterion for the 3D Navier-Stokes equations
- CPAA Home
- This Issue
-
Next Article
On vector solutions for coupled nonlinear Schrödinger equations with critical exponents
Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor
1. | College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710062 |
2. | School of Science, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China |
3. | College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710119 |
References:
[1] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161.
doi: 10.1007/BF00282325. |
[2] |
Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differtial Equations, 144 (1998), 390.
doi: 10.1006/jdeq.1997.3394. |
[3] |
D. G. Figueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation,, Comm. Partial Differential Equations, 17 (1992), 339.
doi: 10.5269/bspm.v30i2.14502. |
[4] |
S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor,, SIAM J. Appl. Math., 52 (1992), 528.
doi: 10.1137/0152029. |
[5] |
S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.
doi: 10.1137/0153051. |
[6] |
S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin,, Japan J. Indust. Appl. Math., 15 (1998), 471.
doi: 10.1007/BF03167323. |
[7] |
S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor,, Math. Biosci., 187 (2004), 53.
doi: 10.1016/j.mbs.2003.07.004. |
[8] |
T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1966).
doi: 10.1007/978-3-642-66282-9. |
[9] |
R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics,, J. Theoret. Biol., 122 (1988), 83.
doi: 10.1016/S0022-5193(86)80226-0. |
[10] |
H. Nie and J. Wu, A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 989.
doi: 10.1142/S0218127406015246. |
[11] |
H. L. Smith and P. Waltman, "The Theory of the Chemostat,", Cambridge University Press, (1995).
doi: 10.1017/CBO9780511530043. |
[12] |
J. W. H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat,, Appl. Math. Comput., 32 (1989), 169.
doi: 10.1016/0096-3003(89)90092-1. |
[13] |
J. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.
doi: 10.1016/S0362-546X(98)00250-8. |
[14] |
J. Wu, H. Nie and G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat,, SIAM J. Appl. Math., 65 (2004), 209.
doi: 10.1137/S0036139903423285. |
[15] |
J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860.
doi: 10.1137/050627514. |
[16] |
J. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300.
doi: 10.1006/jdeq.2000.3870. |
show all references
References:
[1] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161.
doi: 10.1007/BF00282325. |
[2] |
Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differtial Equations, 144 (1998), 390.
doi: 10.1006/jdeq.1997.3394. |
[3] |
D. G. Figueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation,, Comm. Partial Differential Equations, 17 (1992), 339.
doi: 10.5269/bspm.v30i2.14502. |
[4] |
S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor,, SIAM J. Appl. Math., 52 (1992), 528.
doi: 10.1137/0152029. |
[5] |
S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.
doi: 10.1137/0153051. |
[6] |
S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin,, Japan J. Indust. Appl. Math., 15 (1998), 471.
doi: 10.1007/BF03167323. |
[7] |
S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor,, Math. Biosci., 187 (2004), 53.
doi: 10.1016/j.mbs.2003.07.004. |
[8] |
T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1966).
doi: 10.1007/978-3-642-66282-9. |
[9] |
R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics,, J. Theoret. Biol., 122 (1988), 83.
doi: 10.1016/S0022-5193(86)80226-0. |
[10] |
H. Nie and J. Wu, A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 989.
doi: 10.1142/S0218127406015246. |
[11] |
H. L. Smith and P. Waltman, "The Theory of the Chemostat,", Cambridge University Press, (1995).
doi: 10.1017/CBO9780511530043. |
[12] |
J. W. H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat,, Appl. Math. Comput., 32 (1989), 169.
doi: 10.1016/0096-3003(89)90092-1. |
[13] |
J. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.
doi: 10.1016/S0362-546X(98)00250-8. |
[14] |
J. Wu, H. Nie and G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat,, SIAM J. Appl. Math., 65 (2004), 209.
doi: 10.1137/S0036139903423285. |
[15] |
J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860.
doi: 10.1137/050627514. |
[16] |
J. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300.
doi: 10.1006/jdeq.2000.3870. |
[1] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[2] |
Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020369 |
[3] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[4] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[5] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[6] |
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157 |
[7] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[8] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[9] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[10] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[11] |
Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298 |
[12] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[13] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[14] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[15] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[16] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[17] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[18] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[19] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[20] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]