May  2013, 12(3): 1279-1297. doi: 10.3934/cpaa.2013.12.1279

Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710062

2. 

School of Science, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China

3. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710119

Received  January 2012 Revised  August 2012 Published  September 2012

A competition model of two organisms is considered in the un-stirred chemostat-type system in the presence of an external inhibitor. Asymptotic stability properties of the trivial and semi-trivial steady state solutions are established by spectral analysis. The stability and uniqueness of positive steady state solutions are also given by Lyapunov Schmidt procedure and perturbation technique.
Citation: Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279
References:
[1]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161.  doi: 10.1007/BF00282325.  Google Scholar

[2]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differtial Equations, 144 (1998), 390.  doi: 10.1006/jdeq.1997.3394.  Google Scholar

[3]

D. G. Figueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation,, Comm. Partial Differential Equations, 17 (1992), 339.  doi: 10.5269/bspm.v30i2.14502.  Google Scholar

[4]

S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor,, SIAM J. Appl. Math., 52 (1992), 528.  doi: 10.1137/0152029.  Google Scholar

[5]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[6]

S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin,, Japan J. Indust. Appl. Math., 15 (1998), 471.  doi: 10.1007/BF03167323.  Google Scholar

[7]

S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor,, Math. Biosci., 187 (2004), 53.  doi: 10.1016/j.mbs.2003.07.004.  Google Scholar

[8]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1966).  doi: 10.1007/978-3-642-66282-9.  Google Scholar

[9]

R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics,, J. Theoret. Biol., 122 (1988), 83.  doi: 10.1016/S0022-5193(86)80226-0.  Google Scholar

[10]

H. Nie and J. Wu, A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 989.  doi: 10.1142/S0218127406015246.  Google Scholar

[11]

H. L. Smith and P. Waltman, "The Theory of the Chemostat,", Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[12]

J. W. H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat,, Appl. Math. Comput., 32 (1989), 169.  doi: 10.1016/0096-3003(89)90092-1.  Google Scholar

[13]

J. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[14]

J. Wu, H. Nie and G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat,, SIAM J. Appl. Math., 65 (2004), 209.  doi: 10.1137/S0036139903423285.  Google Scholar

[15]

J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860.  doi: 10.1137/050627514.  Google Scholar

[16]

J. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300.  doi: 10.1006/jdeq.2000.3870.  Google Scholar

show all references

References:
[1]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161.  doi: 10.1007/BF00282325.  Google Scholar

[2]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model,, J. Differtial Equations, 144 (1998), 390.  doi: 10.1006/jdeq.1997.3394.  Google Scholar

[3]

D. G. Figueiredo and J. P. Gossez, Strict monotonicity of eigenvalues and unique continuation,, Comm. Partial Differential Equations, 17 (1992), 339.  doi: 10.5269/bspm.v30i2.14502.  Google Scholar

[4]

S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor,, SIAM J. Appl. Math., 52 (1992), 528.  doi: 10.1137/0152029.  Google Scholar

[5]

S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an un-stirred chemostat,, SIAM J. Appl. Math., 53 (1993), 1026.  doi: 10.1137/0153051.  Google Scholar

[6]

S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin,, Japan J. Indust. Appl. Math., 15 (1998), 471.  doi: 10.1007/BF03167323.  Google Scholar

[7]

S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor,, Math. Biosci., 187 (2004), 53.  doi: 10.1016/j.mbs.2003.07.004.  Google Scholar

[8]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1966).  doi: 10.1007/978-3-642-66282-9.  Google Scholar

[9]

R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics,, J. Theoret. Biol., 122 (1988), 83.  doi: 10.1016/S0022-5193(86)80226-0.  Google Scholar

[10]

H. Nie and J. Wu, A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (2006), 989.  doi: 10.1142/S0218127406015246.  Google Scholar

[11]

H. L. Smith and P. Waltman, "The Theory of the Chemostat,", Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[12]

J. W. H. So and P. Waltman, A nonlinear boundary value problem arising from competition in the chemostat,, Appl. Math. Comput., 32 (1989), 169.  doi: 10.1016/0096-3003(89)90092-1.  Google Scholar

[13]

J. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[14]

J. Wu, H. Nie and G. S. K. Wolkowicz, A mathematical model of competition for two essential resources in the unstirred chemostat,, SIAM J. Appl. Math., 65 (2004), 209.  doi: 10.1137/S0036139903423285.  Google Scholar

[15]

J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Math. Anal., 38 (2007), 1860.  doi: 10.1137/050627514.  Google Scholar

[16]

J. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat,, J. Differential Equations, 172 (2001), 300.  doi: 10.1006/jdeq.2000.3870.  Google Scholar

[1]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[2]

Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020369

[3]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[4]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[5]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[6]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[7]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[8]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[9]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[10]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[11]

Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298

[12]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[14]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[15]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[16]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[17]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[18]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[19]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]