\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An anisotropic regularity criterion for the 3D Navier-Stokes equations

Abstract Related Papers Cited by
  • In this paper, we establish an anisotropic regularity criterion for the 3D incompressible Navier-Stokes equations. It is proved that a weak solution $u$ is regular on $[0,T]$, provided $\frac{\partial u_3}{\partial x_3} \in L^{t_1}(0,T;L^{s_1}(R^3))$, with $\frac{2}{t_1}+\frac{3}{s_1}\leq 2$, $s_1\in(\frac{3}{2},+\infty]$ and $\nabla_h u_3 \in L^{t_2}(0, T; L^{s_2}(R^3))$, with either $\frac{2}{t_2}+\frac{3}{s_2}\leq \frac{19}{12}+\frac{1}{2s_2}$, $s_2\in(\frac{30}{19},3]$ or $ \frac{2}{t_2}+\frac{3}{s_2}\leq \frac{3}{2}+\frac{3}{4s_2}$, $s_2\in(3,+\infty]$. Our result in fact improves a regularity criterion of Zhou and Pokorný [Nonlinearity 23 (2010), 1097--1107].
    Mathematics Subject Classification: Primary: 35Q35, 35B65; Secondary: 76D05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.doi: 10.1007/BF02547354.

    [2]

    E. Hopf, Über die Anfangwertaufgaben für die hydromischen Grundgleichungen, Math. Nachr., 4 (1951), 213-321.doi: 10.1002/mana.3210040121.

    [3]

    G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182.doi: 10.1007/BF02410664.

    [4]

    J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. Anal., 9 (1962), 187-195.doi: 10.1007/BF00253344.

    [5]

    L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for parabolic equations, Arch. Rat. Mech. Anal., 169 (2003), 147-157.doi: 10.1007/s00205-003-0263-8.

    [6]

    H. Beirão da Veiga, A new regularity class for the Navier-stokes equations in $\mathbfR^n$, Chin. Ann. Math., 16 (1995), 407-412.

    [7]

    J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, in "Topics in mathematical fluid mechanics," (2002), 163-183.

    [8]

    Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations, J. Math. Pures Appl., 84 (2005), 1496-1514.doi: 10.1016/j.matpur.2005.07.003.

    [9]

    Y. Zhou, A new regularity result for the Navier-Stokes equations in terms of the gradient of one velocity component, Methods Appl. Anal., 9 (2002), 563-578.

    [10]

    M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations, Electron. J. Diff. Eqns., 11 (2003), 1-8.

    [11]

    C. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., 57 (2008), 2643-2661.doi: 10.1512/iumj.2008.57.3719.

    [12]

    I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations, Nonlinearity, 19 (2006), 453-469.doi: 10.1088/0951-7715/19/2/012.

    [13]

    I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction, J. Math. Phys., 48 (2007), 065203.doi: 10.1063/1.2395919.

    [14]

    Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys., 50 (2009), 123514.doi: 10.1063/1.3268589.

    [15]

    Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097-1107.doi: 10.1088/0951-7715/23/5/004.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(144) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return