May  2013, 12(3): 1299-1306. doi: 10.3934/cpaa.2013.12.1299

An anisotropic regularity criterion for the 3D Navier-Stokes equations

1. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R.

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

Received  January 2012 Revised  June 2012 Published  September 2012

In this paper, we establish an anisotropic regularity criterion for the 3D incompressible Navier-Stokes equations. It is proved that a weak solution $u$ is regular on $[0,T]$, provided $\frac{\partial u_3}{\partial x_3} \in L^{t_1}(0,T;L^{s_1}(R^3))$, with $\frac{2}{t_1}+\frac{3}{s_1}\leq 2$, $s_1\in(\frac{3}{2},+\infty]$ and $\nabla_h u_3 \in L^{t_2}(0, T; L^{s_2}(R^3))$, with either $\frac{2}{t_2}+\frac{3}{s_2}\leq \frac{19}{12}+\frac{1}{2s_2}$, $s_2\in(\frac{30}{19},3]$ or $ \frac{2}{t_2}+\frac{3}{s_2}\leq \frac{3}{2}+\frac{3}{4s_2}$, $s_2\in(3,+\infty]$. Our result in fact improves a regularity criterion of Zhou and Pokorný [Nonlinearity 23 (2010), 1097--1107].
Citation: Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299
References:
[1]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[2]

E. Hopf, Über die Anfangwertaufgaben für die hydromischen Grundgleichungen,, Math. Nachr., 4 (1951), 213.  doi: 10.1002/mana.3210040121.  Google Scholar

[3]

G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173.  doi: 10.1007/BF02410664.  Google Scholar

[4]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rat. Mech. Anal., 9 (1962), 187.  doi: 10.1007/BF00253344.  Google Scholar

[5]

L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for parabolic equations,, Arch. Rat. Mech. Anal., 169 (2003), 147.  doi: 10.1007/s00205-003-0263-8.  Google Scholar

[6]

H. Beirão da Veiga, A new regularity class for the Navier-stokes equations in $\mathbfR^n$,, Chin. Ann. Math., 16 (1995), 407.   Google Scholar

[7]

J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity,, in, (2002), 163.   Google Scholar

[8]

Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations,, J. Math. Pures Appl., 84 (2005), 1496.  doi: 10.1016/j.matpur.2005.07.003.  Google Scholar

[9]

Y. Zhou, A new regularity result for the Navier-Stokes equations in terms of the gradient of one velocity component,, Methods Appl. Anal., 9 (2002), 563.   Google Scholar

[10]

M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations,, Electron. J. Diff. Eqns., 11 (2003), 1.   Google Scholar

[11]

C. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643.  doi: 10.1512/iumj.2008.57.3719.  Google Scholar

[12]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[13]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2395919.  Google Scholar

[14]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3268589.  Google Scholar

[15]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

show all references

References:
[1]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193.  doi: 10.1007/BF02547354.  Google Scholar

[2]

E. Hopf, Über die Anfangwertaufgaben für die hydromischen Grundgleichungen,, Math. Nachr., 4 (1951), 213.  doi: 10.1002/mana.3210040121.  Google Scholar

[3]

G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173.  doi: 10.1007/BF02410664.  Google Scholar

[4]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rat. Mech. Anal., 9 (1962), 187.  doi: 10.1007/BF00253344.  Google Scholar

[5]

L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for parabolic equations,, Arch. Rat. Mech. Anal., 169 (2003), 147.  doi: 10.1007/s00205-003-0263-8.  Google Scholar

[6]

H. Beirão da Veiga, A new regularity class for the Navier-stokes equations in $\mathbfR^n$,, Chin. Ann. Math., 16 (1995), 407.   Google Scholar

[7]

J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity,, in, (2002), 163.   Google Scholar

[8]

Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations,, J. Math. Pures Appl., 84 (2005), 1496.  doi: 10.1016/j.matpur.2005.07.003.  Google Scholar

[9]

Y. Zhou, A new regularity result for the Navier-Stokes equations in terms of the gradient of one velocity component,, Methods Appl. Anal., 9 (2002), 563.   Google Scholar

[10]

M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations,, Electron. J. Diff. Eqns., 11 (2003), 1.   Google Scholar

[11]

C. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643.  doi: 10.1512/iumj.2008.57.3719.  Google Scholar

[12]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453.  doi: 10.1088/0951-7715/19/2/012.  Google Scholar

[13]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2395919.  Google Scholar

[14]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3268589.  Google Scholar

[15]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[6]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[7]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[8]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[9]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[10]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[11]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[12]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[13]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[14]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[15]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[16]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[17]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[18]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[19]

Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]