May  2013, 12(3): 1363-1380. doi: 10.3934/cpaa.2013.12.1363

Quasilinear elliptic problem with Hardy potential and singular term

1. 

Département de Mathématiques, Université Abou Bakr Belkaïd, Tlemcen, Tlemcen 13000, Algeria, Algeria

Received  April 2012 Revised  July 2012 Published  September 2012

We consider the following quasilinear elliptic problem \begin{eqnarray*} -\Delta_pu =\lambda\frac{u^{p-1}}{|x|^p}+\frac{h}{u^\gamma} \quad in \quad\Omega, \end{eqnarray*} where $1 < p < N, \Omega\subset R^N$ is a bounded regular domain such that $0\in \Omega, \gamma>0$ and $h$ is a nonnegative measurable function with suitable hypotheses.
The main goal of this work is to analyze the interaction between the Hardy potential and the singular term $u^{-\gamma}$ in order to get a solution for the largest possible class of the datum $h$. The regularity of the solution is also analyzed.
Citation: Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363
References:
[1]

B. Abdellaoui, E. Collorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities,, Calc. Var, 23 (2005), 327.  doi: 10.1007/s00526-004-0303-8.  Google Scholar

[2]

B. Abdellaoui, V. Felli and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-laplacian,, Boll. Unione Mat. Ital. Sez. B., 2 (2006), 445.  doi: 10.1007/s10231-002-0064-y.  Google Scholar

[3]

B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential,, Annal. Math. Pura. Appl, 182 (2003), 247.  doi: 10.1007/s10231-002-0064-y.  Google Scholar

[4]

B. Abdellaoui and I. Peral, A note on a critical problem with natural growth in the gradient,, Jour. Euro. Math. Soc, 6 (2006), 119.  doi: 10.4171/JEMS/43.  Google Scholar

[5]

B. Abdellaoui and I. Peral, The Equation $-\Delta u-\lambda \fracu{|x|^2} = |\nabla u|^p +cf(x)$, the optimal power,, Ann. Scuola Norm. Sup. Pisa, 5 (2007), 159.   Google Scholar

[6]

C. O. Alves, J. V. Goncalves and L. Maia, Singular nonlinear elliptic equations in $\mathbbR^N$,, Abstr. Appl. Anal., 3 (1998), 411.  doi: 10.1155/S1085337598000633.  Google Scholar

[7]

W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Laplacian and applications,, Nonlinear Ana. T.M.A., 32 (1998), 819.  doi: 10.1016/S0362-546X(97)00530-0.  Google Scholar

[8]

D. Arcoya, J. Carmona, T. Leonori, P. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations,, J. Differential Equations, 246 (2009), 4006.  doi: 10.1016/j.jde.2009.01.016.  Google Scholar

[9]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 22 (1995), 241.   Google Scholar

[10]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM. Control, 14 (2008), 411.  doi: 10.1051/cocv:2008031.  Google Scholar

[11]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities,, Calc. Var., 37 (2010), 363.  doi: 10.1007/s00526-009-0266-x.  Google Scholar

[12]

L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential,, Discrete Contin. Dyn. Syst., 16 (2006), 513.  doi: 10.3934/dcds.2006.16.513.  Google Scholar

[13]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions,, Boll. Unione. Mat. Ital. Sez. B, 8 (1998), 223.   Google Scholar

[14]

H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbbR^N$,, Manuscripta Math., 74 (1992), 87.  doi: 10.1007/BF02567660.  Google Scholar

[15]

J. Cheng and Z. Zhang, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems,, Nonlinear Anal., 57 (2004), 473.  doi: 10.1016/j.na.2004.02.025.  Google Scholar

[16]

J. García Azorero and I. Peral, Hardy Inequalities and some critical elliptic and parabolic problems,, J. Diff. Eq., 144 (1998), 441.  doi: 10.1006/jdeq.1997.3375.  Google Scholar

[17]

A. C. Lazer and J. P. McKenna, On a singular nonlinear elliptic boundary-value problem,, Proc. Amer. Math. Soc., 111 (1991), 721.  doi: 10.2307/2048410.  Google Scholar

[18]

S. E. Miri, Quasilinear elliptic problems with Hardy potential and reaction term,, Differ. Equ. Appl. Available from: \url{ http://dea.ele-math.com/forthcoming}, ().   Google Scholar

[19]

F. Murat, L'injection du cone positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$,, J. Math. Pures Appl., 60 (1981), 309.   Google Scholar

[20]

G. Stampacchia, Le problème de Dirichlet pour les équations élliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier, 15 (1965), 189.  doi: 10.5802/aif.204.  Google Scholar

show all references

References:
[1]

B. Abdellaoui, E. Collorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities,, Calc. Var, 23 (2005), 327.  doi: 10.1007/s00526-004-0303-8.  Google Scholar

[2]

B. Abdellaoui, V. Felli and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-laplacian,, Boll. Unione Mat. Ital. Sez. B., 2 (2006), 445.  doi: 10.1007/s10231-002-0064-y.  Google Scholar

[3]

B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential,, Annal. Math. Pura. Appl, 182 (2003), 247.  doi: 10.1007/s10231-002-0064-y.  Google Scholar

[4]

B. Abdellaoui and I. Peral, A note on a critical problem with natural growth in the gradient,, Jour. Euro. Math. Soc, 6 (2006), 119.  doi: 10.4171/JEMS/43.  Google Scholar

[5]

B. Abdellaoui and I. Peral, The Equation $-\Delta u-\lambda \fracu{|x|^2} = |\nabla u|^p +cf(x)$, the optimal power,, Ann. Scuola Norm. Sup. Pisa, 5 (2007), 159.   Google Scholar

[6]

C. O. Alves, J. V. Goncalves and L. Maia, Singular nonlinear elliptic equations in $\mathbbR^N$,, Abstr. Appl. Anal., 3 (1998), 411.  doi: 10.1155/S1085337598000633.  Google Scholar

[7]

W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Laplacian and applications,, Nonlinear Ana. T.M.A., 32 (1998), 819.  doi: 10.1016/S0362-546X(97)00530-0.  Google Scholar

[8]

D. Arcoya, J. Carmona, T. Leonori, P. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations,, J. Differential Equations, 246 (2009), 4006.  doi: 10.1016/j.jde.2009.01.016.  Google Scholar

[9]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 22 (1995), 241.   Google Scholar

[10]

L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms,, ESAIM. Control, 14 (2008), 411.  doi: 10.1051/cocv:2008031.  Google Scholar

[11]

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities,, Calc. Var., 37 (2010), 363.  doi: 10.1007/s00526-009-0266-x.  Google Scholar

[12]

L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential,, Discrete Contin. Dyn. Syst., 16 (2006), 513.  doi: 10.3934/dcds.2006.16.513.  Google Scholar

[13]

H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions,, Boll. Unione. Mat. Ital. Sez. B, 8 (1998), 223.   Google Scholar

[14]

H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbbR^N$,, Manuscripta Math., 74 (1992), 87.  doi: 10.1007/BF02567660.  Google Scholar

[15]

J. Cheng and Z. Zhang, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems,, Nonlinear Anal., 57 (2004), 473.  doi: 10.1016/j.na.2004.02.025.  Google Scholar

[16]

J. García Azorero and I. Peral, Hardy Inequalities and some critical elliptic and parabolic problems,, J. Diff. Eq., 144 (1998), 441.  doi: 10.1006/jdeq.1997.3375.  Google Scholar

[17]

A. C. Lazer and J. P. McKenna, On a singular nonlinear elliptic boundary-value problem,, Proc. Amer. Math. Soc., 111 (1991), 721.  doi: 10.2307/2048410.  Google Scholar

[18]

S. E. Miri, Quasilinear elliptic problems with Hardy potential and reaction term,, Differ. Equ. Appl. Available from: \url{ http://dea.ele-math.com/forthcoming}, ().   Google Scholar

[19]

F. Murat, L'injection du cone positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$,, J. Math. Pures Appl., 60 (1981), 309.   Google Scholar

[20]

G. Stampacchia, Le problème de Dirichlet pour les équations élliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier, 15 (1965), 189.  doi: 10.5802/aif.204.  Google Scholar

[1]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[4]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[12]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]