-
Previous Article
Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior
- CPAA Home
- This Issue
-
Next Article
Spatial decay bounds in a linearized magnetohydrodynamic channel flow
Quasilinear elliptic problem with Hardy potential and singular term
1. | Département de Mathématiques, Université Abou Bakr Belkaïd, Tlemcen, Tlemcen 13000, Algeria, Algeria |
The main goal of this work is to analyze the interaction between the Hardy potential and the singular term $u^{-\gamma}$ in order to get a solution for the largest possible class of the datum $h$. The regularity of the solution is also analyzed.
References:
[1] |
B. Abdellaoui, E. Collorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities, Calc. Var, 23 (2005), 327-345.
doi: 10.1007/s00526-004-0303-8. |
[2] |
B. Abdellaoui, V. Felli and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-laplacian, Boll. Unione Mat. Ital. Sez. B., 2 (2006), 445-484.
doi: 10.1007/s10231-002-0064-y. |
[3] |
B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential, Annal. Math. Pura. Appl, 182 (2003), 247-270.
doi: 10.1007/s10231-002-0064-y. |
[4] |
B. Abdellaoui and I. Peral, A note on a critical problem with natural growth in the gradient, Jour. Euro. Math. Soc, 6 (2006), 119-136
doi: 10.4171/JEMS/43. |
[5] |
B. Abdellaoui and I. Peral, The Equation $-\Delta u-\lambda \frac{u}{|x|^2} = |\nabla u|^p +cf(x)$, the optimal power, Ann. Scuola Norm. Sup. Pisa, 5 (2007), 159-183. |
[6] |
C. O. Alves, J. V. Goncalves and L. Maia, Singular nonlinear elliptic equations in $\mathbb{R}^N2$, Abstr. Appl. Anal., 3 (1998), 411-423.
doi: 10.1155/S1085337598000633. |
[7] |
W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Laplacian and applications, Nonlinear Ana. T.M.A., 32 (1998), 819-830.
doi: 10.1016/S0362-546X(97)00530-0. |
[8] |
D. Arcoya, J. Carmona, T. Leonori, P. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations, 246 (2009), 4006-4042.
doi: 10.1016/j.jde.2009.01.016. |
[9] |
P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 22 (1995), 241-273. |
[10] |
L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM. Control, Optimisation and Calculus of Variations, 14 (2008), 411-426.
doi: 10.1051/cocv:2008031. |
[11] |
L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var., 37 (2010), 363-380.
doi: 10.1007/s00526-009-0266-x. |
[12] |
L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Contin. Dyn. Syst., 16 (2006), 513-523.
doi: 10.3934/dcds.2006.16.513. |
[13] |
H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Unione. Mat. Ital. Sez. B, 8 (1998), 223-262. |
[14] |
H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbb{R}^N2$, Manuscripta Math., 74 (1992), 87-106.
doi: 10.1007/BF02567660. |
[15] |
J. Cheng and Z. Zhang, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems, Nonlinear Anal., 57 (2004), 473-484.
doi: 10.1016/j.na.2004.02.025. |
[16] |
J. García Azorero and I. Peral, Hardy Inequalities and some critical elliptic and parabolic problems, J. Diff. Eq., 144 (1998), 441-476.
doi: 10.1006/jdeq.1997.3375. |
[17] |
A. C. Lazer and J. P. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.
doi: 10.2307/2048410. |
[18] |
S. E. Miri, Quasilinear elliptic problems with Hardy potential and reaction term, Differ. Equ. Appl. Available from: http://dea.ele-math.com/forthcoming |
[19] |
F. Murat, L'injection du cone positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl., 60 (1981) 309-322. |
[20] |
G. Stampacchia, Le problème de Dirichlet pour les équations élliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189-258.
doi: 10.5802/aif.204. |
show all references
References:
[1] |
B. Abdellaoui, E. Collorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities, Calc. Var, 23 (2005), 327-345.
doi: 10.1007/s00526-004-0303-8. |
[2] |
B. Abdellaoui, V. Felli and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-laplacian, Boll. Unione Mat. Ital. Sez. B., 2 (2006), 445-484.
doi: 10.1007/s10231-002-0064-y. |
[3] |
B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential, Annal. Math. Pura. Appl, 182 (2003), 247-270.
doi: 10.1007/s10231-002-0064-y. |
[4] |
B. Abdellaoui and I. Peral, A note on a critical problem with natural growth in the gradient, Jour. Euro. Math. Soc, 6 (2006), 119-136
doi: 10.4171/JEMS/43. |
[5] |
B. Abdellaoui and I. Peral, The Equation $-\Delta u-\lambda \frac{u}{|x|^2} = |\nabla u|^p +cf(x)$, the optimal power, Ann. Scuola Norm. Sup. Pisa, 5 (2007), 159-183. |
[6] |
C. O. Alves, J. V. Goncalves and L. Maia, Singular nonlinear elliptic equations in $\mathbb{R}^N2$, Abstr. Appl. Anal., 3 (1998), 411-423.
doi: 10.1155/S1085337598000633. |
[7] |
W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Laplacian and applications, Nonlinear Ana. T.M.A., 32 (1998), 819-830.
doi: 10.1016/S0362-546X(97)00530-0. |
[8] |
D. Arcoya, J. Carmona, T. Leonori, P. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations, 246 (2009), 4006-4042.
doi: 10.1016/j.jde.2009.01.016. |
[9] |
P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vazquez, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa. Cl. Sci., 22 (1995), 241-273. |
[10] |
L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms, ESAIM. Control, Optimisation and Calculus of Variations, 14 (2008), 411-426.
doi: 10.1051/cocv:2008031. |
[11] |
L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var., 37 (2010), 363-380.
doi: 10.1007/s00526-009-0266-x. |
[12] |
L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential, Discrete Contin. Dyn. Syst., 16 (2006), 513-523.
doi: 10.3934/dcds.2006.16.513. |
[13] |
H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions, Boll. Unione. Mat. Ital. Sez. B, 8 (1998), 223-262. |
[14] |
H. Brezis and S. Kamin, Sublinear elliptic equations in $\mathbb{R}^N2$, Manuscripta Math., 74 (1992), 87-106.
doi: 10.1007/BF02567660. |
[15] |
J. Cheng and Z. Zhang, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems, Nonlinear Anal., 57 (2004), 473-484.
doi: 10.1016/j.na.2004.02.025. |
[16] |
J. García Azorero and I. Peral, Hardy Inequalities and some critical elliptic and parabolic problems, J. Diff. Eq., 144 (1998), 441-476.
doi: 10.1006/jdeq.1997.3375. |
[17] |
A. C. Lazer and J. P. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111 (1991), 721-730.
doi: 10.2307/2048410. |
[18] |
S. E. Miri, Quasilinear elliptic problems with Hardy potential and reaction term, Differ. Equ. Appl. Available from: http://dea.ele-math.com/forthcoming |
[19] |
F. Murat, L'injection du cone positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl., 60 (1981) 309-322. |
[20] |
G. Stampacchia, Le problème de Dirichlet pour les équations élliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189-258.
doi: 10.5802/aif.204. |
[1] |
Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure and Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527 |
[2] |
Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123 |
[3] |
Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure and Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191 |
[4] |
Lucio Boccardo, Luigi Orsina, Ireneo Peral. A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 513-523. doi: 10.3934/dcds.2006.16.513 |
[5] |
Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747 |
[6] |
Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033 |
[7] |
Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure and Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571 |
[8] |
Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747 |
[9] |
Dario D. Monticelli, Fabio Punzo. Nonexistence results for elliptic differential inequalities with a potential in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 675-695. doi: 10.3934/dcds.2018029 |
[10] |
Ilaria Fragalà, Filippo Gazzola, Gary Lieberman. Regularity and nonexistence results for anisotropic quasilinear elliptic equations in convex domains. Conference Publications, 2005, 2005 (Special) : 280-286. doi: 10.3934/proc.2005.2005.280 |
[11] |
Mehdi Badra, Kaushik Bal, Jacques Giacomoni. Existence results to a quasilinear and singular parabolic equation. Conference Publications, 2011, 2011 (Special) : 117-125. doi: 10.3934/proc.2011.2011.117 |
[12] |
Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016 |
[13] |
José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138 |
[14] |
Prashanta Garain, Tuhina Mukherjee. Quasilinear nonlocal elliptic problems with variable singular exponent. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5059-5075. doi: 10.3934/cpaa.2020226 |
[15] |
Marino Badiale, Michela Guida, Sergio Rolando. Radial quasilinear elliptic problems with singular or vanishing potentials. Communications on Pure and Applied Analysis, 2022, 21 (1) : 23-46. doi: 10.3934/cpaa.2021165 |
[16] |
Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure and Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69 |
[17] |
Anna Maria Candela, Addolorata Salvatore. Existence of minimizers for some quasilinear elliptic problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3335-3345. doi: 10.3934/dcdss.2020241 |
[18] |
Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128 |
[19] |
Evgeny Galakhov. Some nonexistence results for quasilinear PDE's. Communications on Pure and Applied Analysis, 2007, 6 (1) : 141-161. doi: 10.3934/cpaa.2007.6.141 |
[20] |
Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]