-
Previous Article
Multiple solutions for a class of $(p_1, \ldots, p_n)$-biharmonic systems
- CPAA Home
- This Issue
-
Next Article
Quasilinear elliptic problem with Hardy potential and singular term
Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior
1. | Department of Mathematics and Informational Science, Yantai University, P.O. Box 264005, Yantai, Shandong |
References:
[1] |
S. Alarcón, J. García-Melián and A. Quaas, Keller-Osserman type conditions for some elliptic problems with gradient terms, J. Differential Equations, 252 (2012), 886-914.
doi: 10.1016/j.jde.2011.09.033. |
[2] |
H. Amann, Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z., 150 (1976), 281-295.
doi: 10.1007/BF01221152. |
[3] |
C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Analyse Math., 58 (1992), 9-24.
doi: 10.1007/BF02790355. |
[4] |
C. Bandle and E. Giarrusso, Boundary blow-up for semilinear elliptic equations with nonlinear gradient term, Adv. Differential Equations, 1 (1996), 133-150. |
[5] |
E. B. Castillo and R. L. Albornoz, Local gradient estimates and existence of blow-up solutions to a class of quasilinear elliptic equations, J. Math. Anal. Appl., 280 (2003), 123-132.
doi: 10.1016/S0022-247X(03)00058-1. |
[6] |
Y. Chen and M. Wang, Large solutions for quasilinear elliptic equation with nonlinear gradient term, Nonlinear Anal.: Real World Appl., 12 (2011), 455-463.
doi: 10.1016/j.nonrwa.2010.06.031. |
[7] |
Y. Chen and M. Wang, Boundary blow-up solutions for elliptic equations with gradient terms and singular weights : existence, asymptotic behaviour and uniqueness, Proc. Roy. Soc. Edinb., 141A (2011), 717-737. |
[8] |
F. Cîrstea and V. Rădulescu, Uniqueness of the blow-up boundary solution of logistic equations with absorbtion, C. R. Acad. Sci. Paris, Sér. I, 335 (2002), 447-452.
doi: 10.1016/S1631-073X(02)02503-7/FLA. |
[9] |
F. Cîrstea and V. Rădulescu, Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach, Asymptotic Anal., 46 (2006), 275-298. |
[10] |
F. Cîrstea and Y. Du, General uniqueness results and variation speed for blow-up solutions of elliptic equations, Proc. London Math. Soc., 91 (2005), 459-482.
doi: 10.1112/S0024611505015273. |
[11] |
V. Ferone, Boundary blow-up for nonlinear elliptic equations with general growth in the gradient: an approach via symmetrisation, Le Matematiche, 65 (2010), 55-68.
doi: 10.4418/2010.65.2.8. |
[12] |
V. Ferone, E. Giarrusso, B. Messano and M. R. Posteraro, Estimates for blow-up solutions to nonlinear elliptic equations with $p$-growth in the gradient, Z. Anal. Anwend., 29 (2010), 219-234.
doi: 10.4171/ZAA/1406. |
[13] |
E. Giarrusso and G. Porru, Problems for elliptic singular equations with a gradient term, Nonlinear Anal., 65 (2006), 107-128.
doi: 10.1016/j.na.2005.08.007. |
[14] |
E. Giarrusso, Asymptotic behavior of large solutions of an elliptic quasilinear equation in a borderline case, C.R. Acad. Sci. Paris Ser. I, 331 (2000), 777-782.
doi: 10.1016/S0764-4442(00)01707-9/FLA. |
[15] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' 3nd edition, Springer - Verlag, Berlin, 1998. |
[16] |
V. Goncalves, A. Roncalli, Boundary blow-up solutions for a class of elliptic equations on a bounded domain, Appl. Math. Comput., 182 (2006), 13-23.
doi: 10.1016/j.amc.2006.03.029. |
[17] |
S. Huang, W. Li, Q. Tian and C. Mu, Large solution to nonlinear elliptic equation with nonlinear gradient terms, J. Diff. Equations, 251 (2011), 3297-3328.
doi: 10.1016/j.jde.2011.08.031. |
[18] |
J. B. Keller, On solutions of $\Delta u=f(u)$, Commun. Pure Appl. Math., 10 (1957), 503-510.
doi: 10.1002/cpa.3160100402. |
[19] |
A. V. Lair and A. W. Wood, Large solutions of semilinear elliptic equations with nonlinear gradient terms, Int. J. Math. Math. Sci., 22 (1999), 869-883.
doi: 10.1006/S 0161-1712<99>22869-4. |
[20] |
A. V. Lair, A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations, J. Math. Anal. Appl., 240 (1999), 205-218.
doi: 10.1006/jmaa.1999.6609. |
[21] |
J. M. Lasry and P. L. Lions, Nonlinear elliptic equations with singular boundary Conditions and stochastic control with state constrains, Math. Ann., 283 (1989), 583-630.
doi: 10.1007/BF01442856. |
[22] |
T. Leonori, Large solutions for a class of nonlinear elliptic equations with gradient terms, Adv. Nonlinear Studies, 7 (2007), 237-269. |
[23] |
T. Leonori and A. Porretta, The boundary behavior of blow-up solutions related to a stochastic control problem with state constraint, SIAM J. Math. Anal., 39 (2007), 1295-1327.
doi: 10.1137/070681363. |
[24] |
V. Maric, "Regular Variation and Differential Equations,'' Lecture Notes in Math., vol. 1726, Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0103952. |
[25] |
R. Osserman, On the inequality $\Delta u\geq f(u)$, Pacific J. Math., 7 (1957), 1641-1647. |
[26] |
A. Porretta and L. Véron, Asymptotic behaviour for the gradient of large solutions to some nonlinear elliptic equations, Adv. Nonlinear Studies, 6 (2006), 351-378. |
[27] |
S. I. Resnick, "Extreme Values, Regular Variation, and Point Processes,'' Springer-Verlag, New York, Berlin, 1987. |
[28] |
Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms, J. Differential Equations, 228 (2006), 661-684.
doi: 10.1016/j.jde.2006.02.003. |
[29] |
Z. Zhang, Boundary behavior of large solutions to semilinear elliptic equations with nonlinear gradient terms, Nonlinear Anal., 73 (2010), 3348-3363.
doi: 10.1016/j.na.2010.07.017. |
[30] |
Z. Zhang, Nonlinear elliptic equations with singular boundary conditions, J. Math. Anal. Appl., 216 (1997), 390-397.
doi: 10.1006//jmaa.1997.5635. |
[31] |
Z. Zhang, Y. Ma, L. Mi and X. Li, Blow-up rates of large solutions for elliptic equations, J. Differential Equations, 249 (2010), 180-199.
doi: 10.1016/j.jde.2010.02.019. |
show all references
References:
[1] |
S. Alarcón, J. García-Melián and A. Quaas, Keller-Osserman type conditions for some elliptic problems with gradient terms, J. Differential Equations, 252 (2012), 886-914.
doi: 10.1016/j.jde.2011.09.033. |
[2] |
H. Amann, Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z., 150 (1976), 281-295.
doi: 10.1007/BF01221152. |
[3] |
C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Analyse Math., 58 (1992), 9-24.
doi: 10.1007/BF02790355. |
[4] |
C. Bandle and E. Giarrusso, Boundary blow-up for semilinear elliptic equations with nonlinear gradient term, Adv. Differential Equations, 1 (1996), 133-150. |
[5] |
E. B. Castillo and R. L. Albornoz, Local gradient estimates and existence of blow-up solutions to a class of quasilinear elliptic equations, J. Math. Anal. Appl., 280 (2003), 123-132.
doi: 10.1016/S0022-247X(03)00058-1. |
[6] |
Y. Chen and M. Wang, Large solutions for quasilinear elliptic equation with nonlinear gradient term, Nonlinear Anal.: Real World Appl., 12 (2011), 455-463.
doi: 10.1016/j.nonrwa.2010.06.031. |
[7] |
Y. Chen and M. Wang, Boundary blow-up solutions for elliptic equations with gradient terms and singular weights : existence, asymptotic behaviour and uniqueness, Proc. Roy. Soc. Edinb., 141A (2011), 717-737. |
[8] |
F. Cîrstea and V. Rădulescu, Uniqueness of the blow-up boundary solution of logistic equations with absorbtion, C. R. Acad. Sci. Paris, Sér. I, 335 (2002), 447-452.
doi: 10.1016/S1631-073X(02)02503-7/FLA. |
[9] |
F. Cîrstea and V. Rădulescu, Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach, Asymptotic Anal., 46 (2006), 275-298. |
[10] |
F. Cîrstea and Y. Du, General uniqueness results and variation speed for blow-up solutions of elliptic equations, Proc. London Math. Soc., 91 (2005), 459-482.
doi: 10.1112/S0024611505015273. |
[11] |
V. Ferone, Boundary blow-up for nonlinear elliptic equations with general growth in the gradient: an approach via symmetrisation, Le Matematiche, 65 (2010), 55-68.
doi: 10.4418/2010.65.2.8. |
[12] |
V. Ferone, E. Giarrusso, B. Messano and M. R. Posteraro, Estimates for blow-up solutions to nonlinear elliptic equations with $p$-growth in the gradient, Z. Anal. Anwend., 29 (2010), 219-234.
doi: 10.4171/ZAA/1406. |
[13] |
E. Giarrusso and G. Porru, Problems for elliptic singular equations with a gradient term, Nonlinear Anal., 65 (2006), 107-128.
doi: 10.1016/j.na.2005.08.007. |
[14] |
E. Giarrusso, Asymptotic behavior of large solutions of an elliptic quasilinear equation in a borderline case, C.R. Acad. Sci. Paris Ser. I, 331 (2000), 777-782.
doi: 10.1016/S0764-4442(00)01707-9/FLA. |
[15] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' 3nd edition, Springer - Verlag, Berlin, 1998. |
[16] |
V. Goncalves, A. Roncalli, Boundary blow-up solutions for a class of elliptic equations on a bounded domain, Appl. Math. Comput., 182 (2006), 13-23.
doi: 10.1016/j.amc.2006.03.029. |
[17] |
S. Huang, W. Li, Q. Tian and C. Mu, Large solution to nonlinear elliptic equation with nonlinear gradient terms, J. Diff. Equations, 251 (2011), 3297-3328.
doi: 10.1016/j.jde.2011.08.031. |
[18] |
J. B. Keller, On solutions of $\Delta u=f(u)$, Commun. Pure Appl. Math., 10 (1957), 503-510.
doi: 10.1002/cpa.3160100402. |
[19] |
A. V. Lair and A. W. Wood, Large solutions of semilinear elliptic equations with nonlinear gradient terms, Int. J. Math. Math. Sci., 22 (1999), 869-883.
doi: 10.1006/S 0161-1712<99>22869-4. |
[20] |
A. V. Lair, A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations, J. Math. Anal. Appl., 240 (1999), 205-218.
doi: 10.1006/jmaa.1999.6609. |
[21] |
J. M. Lasry and P. L. Lions, Nonlinear elliptic equations with singular boundary Conditions and stochastic control with state constrains, Math. Ann., 283 (1989), 583-630.
doi: 10.1007/BF01442856. |
[22] |
T. Leonori, Large solutions for a class of nonlinear elliptic equations with gradient terms, Adv. Nonlinear Studies, 7 (2007), 237-269. |
[23] |
T. Leonori and A. Porretta, The boundary behavior of blow-up solutions related to a stochastic control problem with state constraint, SIAM J. Math. Anal., 39 (2007), 1295-1327.
doi: 10.1137/070681363. |
[24] |
V. Maric, "Regular Variation and Differential Equations,'' Lecture Notes in Math., vol. 1726, Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0103952. |
[25] |
R. Osserman, On the inequality $\Delta u\geq f(u)$, Pacific J. Math., 7 (1957), 1641-1647. |
[26] |
A. Porretta and L. Véron, Asymptotic behaviour for the gradient of large solutions to some nonlinear elliptic equations, Adv. Nonlinear Studies, 6 (2006), 351-378. |
[27] |
S. I. Resnick, "Extreme Values, Regular Variation, and Point Processes,'' Springer-Verlag, New York, Berlin, 1987. |
[28] |
Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms, J. Differential Equations, 228 (2006), 661-684.
doi: 10.1016/j.jde.2006.02.003. |
[29] |
Z. Zhang, Boundary behavior of large solutions to semilinear elliptic equations with nonlinear gradient terms, Nonlinear Anal., 73 (2010), 3348-3363.
doi: 10.1016/j.na.2010.07.017. |
[30] |
Z. Zhang, Nonlinear elliptic equations with singular boundary conditions, J. Math. Anal. Appl., 216 (1997), 390-397.
doi: 10.1006//jmaa.1997.5635. |
[31] |
Z. Zhang, Y. Ma, L. Mi and X. Li, Blow-up rates of large solutions for elliptic equations, J. Differential Equations, 249 (2010), 180-199.
doi: 10.1016/j.jde.2010.02.019. |
[1] |
Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure and Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465 |
[2] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[3] |
Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881 |
[4] |
Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54 |
[5] |
Jorge García-Melián, Julio D. Rossi, José C. Sabina de Lis. Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities. Communications on Pure and Applied Analysis, 2016, 15 (2) : 549-562. doi: 10.3934/cpaa.2016.15.549 |
[6] |
Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828 |
[7] |
Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 |
[8] |
Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733 |
[9] |
Mingzhu Wu, Zuodong Yang. Existence of boundary blow-up solutions for a class of quasiliner elliptic systems for the subcritical case. Communications on Pure and Applied Analysis, 2007, 6 (2) : 531-540. doi: 10.3934/cpaa.2007.6.531 |
[10] |
Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure and Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521 |
[11] |
Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022106 |
[12] |
Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 |
[13] |
Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure and Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435 |
[14] |
Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621 |
[15] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[16] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[17] |
Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051 |
[18] |
Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023 |
[19] |
Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271 |
[20] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]