May  2013, 12(3): 1381-1392. doi: 10.3934/cpaa.2013.12.1381

Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior

1. 

Department of Mathematics and Informational Science, Yantai University, P.O. Box 264005, Yantai, Shandong

Received  April 2012 Revised  July 2012 Published  September 2012

In this paper, we study the existence and boundary behavior of solutions to boundary blow-up elliptic problems \begin{eqnarray*} \triangle u =b(x)f(u)(1+|\nabla u|^q), u\geq 0, \ x\in \Omega,\ u|_{\partial \Omega}=\infty, \end{eqnarray*} where $\Omega$ is a bounded domain with smooth boundary in $\mathbb R^N$, $q\in (0, 2]$, $b \in C^{\alpha}(\bar{\Omega})$ which is positive in $\Omega$, may be vanishing on the boundary, and $f$ is normalised regularly varying at infinity with positive index $p$ and $p+q>1$.
Citation: Zhijun Zhang. Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1381-1392. doi: 10.3934/cpaa.2013.12.1381
References:
[1]

S. Alarcón, J. García-Melián and A. Quaas, Keller-Osserman type conditions for some elliptic problems with gradient terms,, J. Differential Equations, 252 (2012), 886.  doi: 10.1016/j.jde.2011.09.033.  Google Scholar

[2]

H. Amann, Existence and multiplicity theorems for semi-linear elliptic boundary value problems,, Math. Z., 150 (1976), 281.  doi: 10.1007/BF01221152.  Google Scholar

[3]

C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior,, J. Analyse Math., 58 (1992), 9.  doi: 10.1007/BF02790355.  Google Scholar

[4]

C. Bandle and E. Giarrusso, Boundary blow-up for semilinear elliptic equations with nonlinear gradient term,, Adv. Differential Equations, 1 (1996), 133.   Google Scholar

[5]

E. B. Castillo and R. L. Albornoz, Local gradient estimates and existence of blow-up solutions to a class of quasilinear elliptic equations,, J. Math. Anal. Appl., 280 (2003), 123.  doi: 10.1016/S0022-247X(03)00058-1.  Google Scholar

[6]

Y. Chen and M. Wang, Large solutions for quasilinear elliptic equation with nonlinear gradient term,, Nonlinear Anal.: Real World Appl., 12 (2011), 455.  doi: 10.1016/j.nonrwa.2010.06.031.  Google Scholar

[7]

Y. Chen and M. Wang, Boundary blow-up solutions for elliptic equations with gradient terms and singular weights : existence, asymptotic behaviour and uniqueness,, Proc. Roy. Soc. Edinb., 141A (2011), 717.   Google Scholar

[8]

F. Cîrstea and V. Rădulescu, Uniqueness of the blow-up boundary solution of logistic equations with absorbtion,, C. R. Acad. Sci. Paris, 335 (2002), 447.  doi: 10.1016/S1631-073X(02)02503-7/FLA.  Google Scholar

[9]

F. Cîrstea and V. Rădulescu, Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach,, Asymptotic Anal., 46 (2006), 275.   Google Scholar

[10]

F. Cîrstea and Y. Du, General uniqueness results and variation speed for blow-up solutions of elliptic equations,, Proc. London Math. Soc., 91 (2005), 459.  doi: 10.1112/S0024611505015273.  Google Scholar

[11]

V. Ferone, Boundary blow-up for nonlinear elliptic equations with general growth in the gradient: an approach via symmetrisation,, Le Matematiche, 65 (2010), 55.  doi: 10.4418/2010.65.2.8.  Google Scholar

[12]

V. Ferone, E. Giarrusso, B. Messano and M. R. Posteraro, Estimates for blow-up solutions to nonlinear elliptic equations with $p$-growth in the gradient,, Z. Anal. Anwend., 29 (2010), 219.  doi: 10.4171/ZAA/1406.  Google Scholar

[13]

E. Giarrusso and G. Porru, Problems for elliptic singular equations with a gradient term,, Nonlinear Anal., 65 (2006), 107.  doi: 10.1016/j.na.2005.08.007.  Google Scholar

[14]

E. Giarrusso, Asymptotic behavior of large solutions of an elliptic quasilinear equation in a borderline case,, C.R. Acad. Sci. Paris Ser. I, 331 (2000), 777.  doi: 10.1016/S0764-4442(00)01707-9/FLA.  Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' 3nd edition,, Springer - Verlag, (1998).   Google Scholar

[16]

V. Goncalves, A. Roncalli, Boundary blow-up solutions for a class of elliptic equations on a bounded domain,, Appl. Math. Comput., 182 (2006), 13.  doi: 10.1016/j.amc.2006.03.029.  Google Scholar

[17]

S. Huang, W. Li, Q. Tian and C. Mu, Large solution to nonlinear elliptic equation with nonlinear gradient terms,, J. Diff. Equations, 251 (2011), 3297.  doi: 10.1016/j.jde.2011.08.031.  Google Scholar

[18]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Commun. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[19]

A. V. Lair and A. W. Wood, Large solutions of semilinear elliptic equations with nonlinear gradient terms,, Int. J. Math. Math. Sci., 22 (1999), 869.  doi: 10.1006/S 0161-1712<99>22869-4.  Google Scholar

[20]

A. V. Lair, A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations,, J. Math. Anal. Appl., 240 (1999), 205.  doi: 10.1006/jmaa.1999.6609.  Google Scholar

[21]

J. M. Lasry and P. L. Lions, Nonlinear elliptic equations with singular boundary Conditions and stochastic control with state constrains,, Math. Ann., 283 (1989), 583.  doi: 10.1007/BF01442856.  Google Scholar

[22]

T. Leonori, Large solutions for a class of nonlinear elliptic equations with gradient terms,, Adv. Nonlinear Studies, 7 (2007), 237.   Google Scholar

[23]

T. Leonori and A. Porretta, The boundary behavior of blow-up solutions related to a stochastic control problem with state constraint,, SIAM J. Math. Anal., 39 (2007), 1295.  doi: 10.1137/070681363.  Google Scholar

[24]

V. Maric, "Regular Variation and Differential Equations,'', Lecture Notes in Math., (1726).  doi: 10.1007/BFb0103952.  Google Scholar

[25]

R. Osserman, On the inequality $\Delta u\geq f(u)$,, Pacific J. Math., 7 (1957), 1641.   Google Scholar

[26]

A. Porretta and L. Véron, Asymptotic behaviour for the gradient of large solutions to some nonlinear elliptic equations,, Adv. Nonlinear Studies, 6 (2006), 351.   Google Scholar

[27]

S. I. Resnick, "Extreme Values, Regular Variation, and Point Processes,'', Springer-Verlag, (1987).   Google Scholar

[28]

Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms,, J. Differential Equations, 228 (2006), 661.  doi: 10.1016/j.jde.2006.02.003.  Google Scholar

[29]

Z. Zhang, Boundary behavior of large solutions to semilinear elliptic equations with nonlinear gradient terms,, Nonlinear Anal., 73 (2010), 3348.  doi: 10.1016/j.na.2010.07.017.  Google Scholar

[30]

Z. Zhang, Nonlinear elliptic equations with singular boundary conditions,, J. Math. Anal. Appl., 216 (1997), 390.  doi: 10.1006//jmaa.1997.5635.  Google Scholar

[31]

Z. Zhang, Y. Ma, L. Mi and X. Li, Blow-up rates of large solutions for elliptic equations,, J. Differential Equations, 249 (2010), 180.  doi: 10.1016/j.jde.2010.02.019.  Google Scholar

show all references

References:
[1]

S. Alarcón, J. García-Melián and A. Quaas, Keller-Osserman type conditions for some elliptic problems with gradient terms,, J. Differential Equations, 252 (2012), 886.  doi: 10.1016/j.jde.2011.09.033.  Google Scholar

[2]

H. Amann, Existence and multiplicity theorems for semi-linear elliptic boundary value problems,, Math. Z., 150 (1976), 281.  doi: 10.1007/BF01221152.  Google Scholar

[3]

C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior,, J. Analyse Math., 58 (1992), 9.  doi: 10.1007/BF02790355.  Google Scholar

[4]

C. Bandle and E. Giarrusso, Boundary blow-up for semilinear elliptic equations with nonlinear gradient term,, Adv. Differential Equations, 1 (1996), 133.   Google Scholar

[5]

E. B. Castillo and R. L. Albornoz, Local gradient estimates and existence of blow-up solutions to a class of quasilinear elliptic equations,, J. Math. Anal. Appl., 280 (2003), 123.  doi: 10.1016/S0022-247X(03)00058-1.  Google Scholar

[6]

Y. Chen and M. Wang, Large solutions for quasilinear elliptic equation with nonlinear gradient term,, Nonlinear Anal.: Real World Appl., 12 (2011), 455.  doi: 10.1016/j.nonrwa.2010.06.031.  Google Scholar

[7]

Y. Chen and M. Wang, Boundary blow-up solutions for elliptic equations with gradient terms and singular weights : existence, asymptotic behaviour and uniqueness,, Proc. Roy. Soc. Edinb., 141A (2011), 717.   Google Scholar

[8]

F. Cîrstea and V. Rădulescu, Uniqueness of the blow-up boundary solution of logistic equations with absorbtion,, C. R. Acad. Sci. Paris, 335 (2002), 447.  doi: 10.1016/S1631-073X(02)02503-7/FLA.  Google Scholar

[9]

F. Cîrstea and V. Rădulescu, Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach,, Asymptotic Anal., 46 (2006), 275.   Google Scholar

[10]

F. Cîrstea and Y. Du, General uniqueness results and variation speed for blow-up solutions of elliptic equations,, Proc. London Math. Soc., 91 (2005), 459.  doi: 10.1112/S0024611505015273.  Google Scholar

[11]

V. Ferone, Boundary blow-up for nonlinear elliptic equations with general growth in the gradient: an approach via symmetrisation,, Le Matematiche, 65 (2010), 55.  doi: 10.4418/2010.65.2.8.  Google Scholar

[12]

V. Ferone, E. Giarrusso, B. Messano and M. R. Posteraro, Estimates for blow-up solutions to nonlinear elliptic equations with $p$-growth in the gradient,, Z. Anal. Anwend., 29 (2010), 219.  doi: 10.4171/ZAA/1406.  Google Scholar

[13]

E. Giarrusso and G. Porru, Problems for elliptic singular equations with a gradient term,, Nonlinear Anal., 65 (2006), 107.  doi: 10.1016/j.na.2005.08.007.  Google Scholar

[14]

E. Giarrusso, Asymptotic behavior of large solutions of an elliptic quasilinear equation in a borderline case,, C.R. Acad. Sci. Paris Ser. I, 331 (2000), 777.  doi: 10.1016/S0764-4442(00)01707-9/FLA.  Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,'' 3nd edition,, Springer - Verlag, (1998).   Google Scholar

[16]

V. Goncalves, A. Roncalli, Boundary blow-up solutions for a class of elliptic equations on a bounded domain,, Appl. Math. Comput., 182 (2006), 13.  doi: 10.1016/j.amc.2006.03.029.  Google Scholar

[17]

S. Huang, W. Li, Q. Tian and C. Mu, Large solution to nonlinear elliptic equation with nonlinear gradient terms,, J. Diff. Equations, 251 (2011), 3297.  doi: 10.1016/j.jde.2011.08.031.  Google Scholar

[18]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Commun. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[19]

A. V. Lair and A. W. Wood, Large solutions of semilinear elliptic equations with nonlinear gradient terms,, Int. J. Math. Math. Sci., 22 (1999), 869.  doi: 10.1006/S 0161-1712<99>22869-4.  Google Scholar

[20]

A. V. Lair, A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations,, J. Math. Anal. Appl., 240 (1999), 205.  doi: 10.1006/jmaa.1999.6609.  Google Scholar

[21]

J. M. Lasry and P. L. Lions, Nonlinear elliptic equations with singular boundary Conditions and stochastic control with state constrains,, Math. Ann., 283 (1989), 583.  doi: 10.1007/BF01442856.  Google Scholar

[22]

T. Leonori, Large solutions for a class of nonlinear elliptic equations with gradient terms,, Adv. Nonlinear Studies, 7 (2007), 237.   Google Scholar

[23]

T. Leonori and A. Porretta, The boundary behavior of blow-up solutions related to a stochastic control problem with state constraint,, SIAM J. Math. Anal., 39 (2007), 1295.  doi: 10.1137/070681363.  Google Scholar

[24]

V. Maric, "Regular Variation and Differential Equations,'', Lecture Notes in Math., (1726).  doi: 10.1007/BFb0103952.  Google Scholar

[25]

R. Osserman, On the inequality $\Delta u\geq f(u)$,, Pacific J. Math., 7 (1957), 1641.   Google Scholar

[26]

A. Porretta and L. Véron, Asymptotic behaviour for the gradient of large solutions to some nonlinear elliptic equations,, Adv. Nonlinear Studies, 6 (2006), 351.   Google Scholar

[27]

S. I. Resnick, "Extreme Values, Regular Variation, and Point Processes,'', Springer-Verlag, (1987).   Google Scholar

[28]

Z. Zhang, Boundary blow-up elliptic problems with nonlinear gradient terms,, J. Differential Equations, 228 (2006), 661.  doi: 10.1016/j.jde.2006.02.003.  Google Scholar

[29]

Z. Zhang, Boundary behavior of large solutions to semilinear elliptic equations with nonlinear gradient terms,, Nonlinear Anal., 73 (2010), 3348.  doi: 10.1016/j.na.2010.07.017.  Google Scholar

[30]

Z. Zhang, Nonlinear elliptic equations with singular boundary conditions,, J. Math. Anal. Appl., 216 (1997), 390.  doi: 10.1006//jmaa.1997.5635.  Google Scholar

[31]

Z. Zhang, Y. Ma, L. Mi and X. Li, Blow-up rates of large solutions for elliptic equations,, J. Differential Equations, 249 (2010), 180.  doi: 10.1016/j.jde.2010.02.019.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[3]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[9]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[10]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[11]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[12]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[13]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[14]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[17]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[20]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]