-
Previous Article
Asymptotic analysis of continuous opinion dynamics models under bounded confidence
- CPAA Home
- This Issue
-
Next Article
Energy conservative solutions to a nonlinear wave system of nematic liquid crystals
Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$
1. | Department of mathematics, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, 306,14 Plzeň, Czech Republic |
References:
[1] |
J. Benedikt, Uniqueness theorem for $p$-biharmonic equations,, Electron. J. Differential Equations, 53 (2002), 1.
|
[2] |
J. Benedikt, Uniqueness theorem for quasilinear $2n$th-order equations,, J. Math. Anal. Appl., 293 (2004), 589.
|
[3] |
J. Benedikt, On simplicity of spectra of $p$-biharmonic equations,, Nonlinear Anal., 58 (2004), 835.
|
[4] |
J. Benedikt, On the discreteness of the spectra of the Dirichlet and Neumann $p$-biharmonic problem,, Abstr. Appl. Anal., 2004 (2004), 777.
|
[5] |
J. Benedikt, Global bifurcation result for Dirichlet and Neumann $p$-biharmonic problem,, NoDEA, 14 (2007), 541.
|
[6] |
M.\,A. Del Pino, M. Elgueta and R.\,F. Man\'asevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2} u')'+f(t,u)=0, u(0)=u(T)=0, p>1$, , J. Differential Equations, 80 (1989), 1.
|
[7] |
P. Drábek, Ranges of $a$-homogeneous operators and their perturbations,, Časopis P\vest. Mat., 105 (1980), 167.
|
[8] |
P. Drábek and M. Ôtani, Global bifurcation result for the $p$-biharmonic operator,, Electron. J. Differential Equations, 48 (2001), 1.
|
[9] |
A. El Khalil, S. Kellati and A. Touzani, On the spectrum of the $p$-biharmonic operator,, in, 09 (2002), 161.
|
[10] |
A. Kratochvíl and J. Nečas, The discreteness of the spectrum of a nonlinear Sturm-Liouville equation of fourth order,, Comment. Math. Univ. Carolinæ, 12 (1971), 639.
|
[11] |
A. Pinkus, $n$-widths of Sobolev spaces in $L^p$,, Constr. Approx., 1 (1985), 15.
|
show all references
References:
[1] |
J. Benedikt, Uniqueness theorem for $p$-biharmonic equations,, Electron. J. Differential Equations, 53 (2002), 1.
|
[2] |
J. Benedikt, Uniqueness theorem for quasilinear $2n$th-order equations,, J. Math. Anal. Appl., 293 (2004), 589.
|
[3] |
J. Benedikt, On simplicity of spectra of $p$-biharmonic equations,, Nonlinear Anal., 58 (2004), 835.
|
[4] |
J. Benedikt, On the discreteness of the spectra of the Dirichlet and Neumann $p$-biharmonic problem,, Abstr. Appl. Anal., 2004 (2004), 777.
|
[5] |
J. Benedikt, Global bifurcation result for Dirichlet and Neumann $p$-biharmonic problem,, NoDEA, 14 (2007), 541.
|
[6] |
M.\,A. Del Pino, M. Elgueta and R.\,F. Man\'asevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2} u')'+f(t,u)=0, u(0)=u(T)=0, p>1$, , J. Differential Equations, 80 (1989), 1.
|
[7] |
P. Drábek, Ranges of $a$-homogeneous operators and their perturbations,, Časopis P\vest. Mat., 105 (1980), 167.
|
[8] |
P. Drábek and M. Ôtani, Global bifurcation result for the $p$-biharmonic operator,, Electron. J. Differential Equations, 48 (2001), 1.
|
[9] |
A. El Khalil, S. Kellati and A. Touzani, On the spectrum of the $p$-biharmonic operator,, in, 09 (2002), 161.
|
[10] |
A. Kratochvíl and J. Nečas, The discreteness of the spectrum of a nonlinear Sturm-Liouville equation of fourth order,, Comment. Math. Univ. Carolinæ, 12 (1971), 639.
|
[11] |
A. Pinkus, $n$-widths of Sobolev spaces in $L^p$,, Constr. Approx., 1 (1985), 15.
|
[1] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[2] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
[3] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[4] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[5] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[6] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[7] |
Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300 |
[8] |
Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020375 |
[9] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[10] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[11] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[12] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[13] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[14] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[15] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[16] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020451 |
[17] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
[18] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[19] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[20] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]