May  2013, 12(3): 1469-1486. doi: 10.3934/cpaa.2013.12.1469

Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$

1. 

Department of mathematics, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 22, 306,14 Plzeň, Czech Republic

Received  April 2012 Revised  May 2012 Published  September 2012

We are concerned with the Dirichlet and Neumann eigenvalue problem for the ordinary quasilinear fourth-order ($p$-biharmonic) equation \begin{eqnarray} (|u''|^{p-2}u'')''=\lambda|u|^{p-2}u, in \quad [0,1], \quad p>1. \end{eqnarray} It is known that the eigenvalues of the Dirichlet and Neumann $p$-biharmonic problem are positive and nonnegative, respectively, isolated, and form an increasing unbounded sequence. We prove that the eigenvalues depend continuously on $p$, and that they interlace with the eigenvalues of the Navier $p$-biharmonic problem.
Citation: Jiří Benedikt. Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1469-1486. doi: 10.3934/cpaa.2013.12.1469
References:
[1]

J. Benedikt, Uniqueness theorem for $p$-biharmonic equations,, Electron. J. Differential Equations, 53 (2002), 1.   Google Scholar

[2]

J. Benedikt, Uniqueness theorem for quasilinear $2n$th-order equations,, J. Math. Anal. Appl., 293 (2004), 589.   Google Scholar

[3]

J. Benedikt, On simplicity of spectra of $p$-biharmonic equations,, Nonlinear Anal., 58 (2004), 835.   Google Scholar

[4]

J. Benedikt, On the discreteness of the spectra of the Dirichlet and Neumann $p$-biharmonic problem,, Abstr. Appl. Anal., 2004 (2004), 777.   Google Scholar

[5]

J. Benedikt, Global bifurcation result for Dirichlet and Neumann $p$-biharmonic problem,, NoDEA, 14 (2007), 541.   Google Scholar

[6]

M.\,A. Del Pino, M. Elgueta and R.\,F. Man\'asevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2} u')'+f(t,u)=0, u(0)=u(T)=0, p>1$, , J. Differential Equations, 80 (1989), 1.   Google Scholar

[7]

P. Drábek, Ranges of $a$-homogeneous operators and their perturbations,, Časopis P\vest. Mat., 105 (1980), 167.   Google Scholar

[8]

P. Drábek and M. Ôtani, Global bifurcation result for the $p$-biharmonic operator,, Electron. J. Differential Equations, 48 (2001), 1.   Google Scholar

[9]

A. El Khalil, S. Kellati and A. Touzani, On the spectrum of the $p$-biharmonic operator,, in, 09 (2002), 161.   Google Scholar

[10]

A. Kratochvíl and J. Nečas, The discreteness of the spectrum of a nonlinear Sturm-Liouville equation of fourth order,, Comment. Math. Univ. Carolinæ, 12 (1971), 639.   Google Scholar

[11]

A. Pinkus, $n$-widths of Sobolev spaces in $L^p$,, Constr. Approx., 1 (1985), 15.   Google Scholar

show all references

References:
[1]

J. Benedikt, Uniqueness theorem for $p$-biharmonic equations,, Electron. J. Differential Equations, 53 (2002), 1.   Google Scholar

[2]

J. Benedikt, Uniqueness theorem for quasilinear $2n$th-order equations,, J. Math. Anal. Appl., 293 (2004), 589.   Google Scholar

[3]

J. Benedikt, On simplicity of spectra of $p$-biharmonic equations,, Nonlinear Anal., 58 (2004), 835.   Google Scholar

[4]

J. Benedikt, On the discreteness of the spectra of the Dirichlet and Neumann $p$-biharmonic problem,, Abstr. Appl. Anal., 2004 (2004), 777.   Google Scholar

[5]

J. Benedikt, Global bifurcation result for Dirichlet and Neumann $p$-biharmonic problem,, NoDEA, 14 (2007), 541.   Google Scholar

[6]

M.\,A. Del Pino, M. Elgueta and R.\,F. Man\'asevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2} u')'+f(t,u)=0, u(0)=u(T)=0, p>1$, , J. Differential Equations, 80 (1989), 1.   Google Scholar

[7]

P. Drábek, Ranges of $a$-homogeneous operators and their perturbations,, Časopis P\vest. Mat., 105 (1980), 167.   Google Scholar

[8]

P. Drábek and M. Ôtani, Global bifurcation result for the $p$-biharmonic operator,, Electron. J. Differential Equations, 48 (2001), 1.   Google Scholar

[9]

A. El Khalil, S. Kellati and A. Touzani, On the spectrum of the $p$-biharmonic operator,, in, 09 (2002), 161.   Google Scholar

[10]

A. Kratochvíl and J. Nečas, The discreteness of the spectrum of a nonlinear Sturm-Liouville equation of fourth order,, Comment. Math. Univ. Carolinæ, 12 (1971), 639.   Google Scholar

[11]

A. Pinkus, $n$-widths of Sobolev spaces in $L^p$,, Constr. Approx., 1 (1985), 15.   Google Scholar

[1]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[2]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[5]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[6]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[7]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[8]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[9]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[10]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[11]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[12]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[13]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[14]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[15]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[16]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[17]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[18]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[19]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[20]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]