Citation: |
[1] |
G. Aletti, G. Naldi and G. Toscani, First-order continuous models of opinion formation, SIAM J. Appl. Math., 67 (2007), 837-853.doi: 10.1137/060658679. |
[2] |
A. Baldassarri, U. Marini Bettolo Marconi and A. Puglisi, Kinetic models of inelastic gases, Mat. Mod. Meth. Appl. Sci., 12 (2002), 965-983.doi: 10.1142/S0218202502001982. |
[3] |
E. Ben-Naim, P. L. Krapivsky and S. Redner, Bifurcation and patterns in compromise processes, Phys. D, 183 (2003), 190-204.doi: 10.1016/S0167-2789(03)00171-4. |
[4] |
M. L. Bertotti, On a class of dynamical systems with emerging cluster structure, Jour. Diff. Eq., 249 (2010), 2757-2770.doi: 10.1016/j.jde.2010.03.014. |
[5] |
V. Blondel, J. M. Hendrickx and J. N. Tsitsiklis, On the $2R$ conjecture for multiagent systems, Proc. Europ. Control Conf., Kos, Greece, (2007), 874-881. |
[6] |
L. Boudin and F. Salvarani, Modelling opinion formation by means of kinetic equations, in "Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences" (G. Naldi, L. Pareschi and G. Toscani eds.), (2010), 245-270, Birkhauser, Boston.doi: 10.1007/978-0-8176-4946-3_10. |
[7] |
L. Boudin and F. Salvarani, The quasi-invariant limit for a kinetic model of sociological collective behavior, Kinet. Relat. Models, 2 (2009) 433-449.doi: 10.3934/krm.2009.2.433. |
[8] |
L. Boudin and F. Salvarani, A kinetic approach to the study of opinion formation, M2AN Math. Model. Numer. Anal., 43 (2009), 507-522.doi: 10.1051/m2an/2009004. |
[9] |
C. Canuto, F. Fagnani and P. Tilli, A Eulerian approach to the analysis of rendez-vous algorithms, Proc. of 2008 IFAC Conf., (2008), 9039-9044. |
[10] |
G. Como and F. Fagnani, Scaling limits for continuous opinion dynamics systems, Ann. Appl. Probab., 21 (2011), 1537-1567.doi: 10.1214/10-AAP739. |
[11] |
S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, Journal of Statistical Physics, 120 (2005), 253-277.doi: 10.1007/s10955-005-5456-0. |
[12] |
G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Adv. Comp. Sys., 3 (2001), 87-98.doi: 10.1142/S0219525900000078. |
[13] |
B. Düring, P. Markowich, J-F. Pietschmann and M-T.Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. Lond. A, 465 (2009)(2112), 3687-3708.doi: 10.1098/rspa.2009.0239. |
[14] |
S. Galam, A review of Galam models, Int. J. Mod. Phys. C, 409 (2008), 3687-3708. |
[15] |
U. Krause, A discrete nonlinear and non-autonomous model of consensus formation, in "Communications in Difference Equations" (S. Elaydi, G. Ladas, J. Popenda and J. Rakowski eds.), Gordon and Breach Science Publ., Amsterdam, (2000) 227-236. |
[16] |
J. Lorenz, A stabilization theorem for continuous opinion dynamics, Phys. A, 355 (2005), 217-223.doi: 10.1016/j.physa.2005.02.086. |
[17] |
J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey, Internat. J. Modern Phys. C, 18 (2007), 1819-1838.doi: 10.1142/S0129183107011789. |
[18] |
S. McNamara and W. R. Young, Kinetics of a one dimensional granular medium in the quasi elastic limit, Phys. Fluids A, 5 (1993), 34-45.doi: 10.1063/1.858896. |
[19] |
L. Pareschi and G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models, J. Stat. Phys., 124 (2006), 747-779.doi: 10.1007/s10955-006-9025-y. |
[20] |
G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496. |
[21] |
G. Weisbuch, G. Deffuant, F. Amblard and J. P. Nadal, Meet, discuss, and segregate!, Complexity, 7 (2002), 55-63.doi: 10.1002/cplx.10031. |