• Previous Article
    Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models
  • CPAA Home
  • This Issue
  • Next Article
    Continuous dependence of eigenvalues of $p$-biharmonic problems on $p$
May  2013, 12(3): 1487-1499. doi: 10.3934/cpaa.2013.12.1487

Asymptotic analysis of continuous opinion dynamics models under bounded confidence

1. 

Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy, Italy

Received  May 2012 Revised  July 2012 Published  September 2012

This paper deals with the asymptotic behavior of mathematical models for opinion dynamics under bounded confidence of Deffuant-Weisbuch type. Focusing on the Cauchy Problem related to compromise models with homogeneous bound of confidence, a general well-posedness result is provided and a systematic study of the asymptotic behavior in time of the solution is developed. More in detail, we prove a theorem that establishes the weak convergence of the solution to a sum of Dirac masses and characterizes the concentration points for different values of the model parameters. Analytical results are illustrated by means of numerical simulations.
Citation: Domenica Borra, Tommaso Lorenzi. Asymptotic analysis of continuous opinion dynamics models under bounded confidence. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1487-1499. doi: 10.3934/cpaa.2013.12.1487
References:
[1]

G. Aletti, G. Naldi and G. Toscani, First-order continuous models of opinion formation, SIAM J. Appl. Math., 67 (2007), 837-853. doi: 10.1137/060658679.  Google Scholar

[2]

A. Baldassarri, U. Marini Bettolo Marconi and A. Puglisi, Kinetic models of inelastic gases, Mat. Mod. Meth. Appl. Sci., 12 (2002), 965-983. doi: 10.1142/S0218202502001982.  Google Scholar

[3]

E. Ben-Naim, P. L. Krapivsky and S. Redner, Bifurcation and patterns in compromise processes, Phys. D, 183 (2003), 190-204. doi: 10.1016/S0167-2789(03)00171-4.  Google Scholar

[4]

M. L. Bertotti, On a class of dynamical systems with emerging cluster structure, Jour. Diff. Eq., 249 (2010), 2757-2770. doi: 10.1016/j.jde.2010.03.014.  Google Scholar

[5]

V. Blondel, J. M. Hendrickx and J. N. Tsitsiklis, On the $2R$ conjecture for multiagent systems, Proc. Europ. Control Conf., Kos, Greece, (2007), 874-881. Google Scholar

[6]

L. Boudin and F. Salvarani, Modelling opinion formation by means of kinetic equations, in "Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences" (G. Naldi, L. Pareschi and G. Toscani eds.), (2010), 245-270, Birkhauser, Boston. doi: 10.1007/978-0-8176-4946-3_10.  Google Scholar

[7]

L. Boudin and F. Salvarani, The quasi-invariant limit for a kinetic model of sociological collective behavior, Kinet. Relat. Models, 2 (2009) 433-449. doi: 10.3934/krm.2009.2.433.  Google Scholar

[8]

L. Boudin and F. Salvarani, A kinetic approach to the study of opinion formation, M2AN Math. Model. Numer. Anal., 43 (2009), 507-522. doi: 10.1051/m2an/2009004.  Google Scholar

[9]

C. Canuto, F. Fagnani and P. Tilli, A Eulerian approach to the analysis of rendez-vous algorithms, Proc. of 2008 IFAC Conf., (2008), 9039-9044. Google Scholar

[10]

G. Como and F. Fagnani, Scaling limits for continuous opinion dynamics systems, Ann. Appl. Probab., 21 (2011), 1537-1567. doi: 10.1214/10-AAP739.  Google Scholar

[11]

S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, Journal of Statistical Physics, 120 (2005), 253-277. doi: 10.1007/s10955-005-5456-0.  Google Scholar

[12]

G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Adv. Comp. Sys., 3 (2001), 87-98. doi: 10.1142/S0219525900000078.  Google Scholar

[13]

B. Düring, P. Markowich, J-F. Pietschmann and M-T.Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. Lond. A, 465 (2009)(2112), 3687-3708. doi: 10.1098/rspa.2009.0239.  Google Scholar

[14]

S. Galam, A review of Galam models, Int. J. Mod. Phys. C, 409 (2008), 3687-3708. Google Scholar

[15]

U. Krause, A discrete nonlinear and non-autonomous model of consensus formation, in "Communications in Difference Equations" (S. Elaydi, G. Ladas, J. Popenda and J. Rakowski eds.), Gordon and Breach Science Publ., Amsterdam, (2000) 227-236.  Google Scholar

[16]

J. Lorenz, A stabilization theorem for continuous opinion dynamics, Phys. A, 355 (2005), 217-223. doi: 10.1016/j.physa.2005.02.086.  Google Scholar

[17]

J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey, Internat. J. Modern Phys. C, 18 (2007), 1819-1838. doi: 10.1142/S0129183107011789.  Google Scholar

[18]

S. McNamara and W. R. Young, Kinetics of a one dimensional granular medium in the quasi elastic limit, Phys. Fluids A, 5 (1993), 34-45. doi: 10.1063/1.858896.  Google Scholar

[19]

L. Pareschi and G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models, J. Stat. Phys., 124 (2006), 747-779. doi: 10.1007/s10955-006-9025-y.  Google Scholar

[20]

G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496.  Google Scholar

[21]

G. Weisbuch, G. Deffuant, F. Amblard and J. P. Nadal, Meet, discuss, and segregate!, Complexity, 7 (2002), 55-63. doi: 10.1002/cplx.10031.  Google Scholar

show all references

References:
[1]

G. Aletti, G. Naldi and G. Toscani, First-order continuous models of opinion formation, SIAM J. Appl. Math., 67 (2007), 837-853. doi: 10.1137/060658679.  Google Scholar

[2]

A. Baldassarri, U. Marini Bettolo Marconi and A. Puglisi, Kinetic models of inelastic gases, Mat. Mod. Meth. Appl. Sci., 12 (2002), 965-983. doi: 10.1142/S0218202502001982.  Google Scholar

[3]

E. Ben-Naim, P. L. Krapivsky and S. Redner, Bifurcation and patterns in compromise processes, Phys. D, 183 (2003), 190-204. doi: 10.1016/S0167-2789(03)00171-4.  Google Scholar

[4]

M. L. Bertotti, On a class of dynamical systems with emerging cluster structure, Jour. Diff. Eq., 249 (2010), 2757-2770. doi: 10.1016/j.jde.2010.03.014.  Google Scholar

[5]

V. Blondel, J. M. Hendrickx and J. N. Tsitsiklis, On the $2R$ conjecture for multiagent systems, Proc. Europ. Control Conf., Kos, Greece, (2007), 874-881. Google Scholar

[6]

L. Boudin and F. Salvarani, Modelling opinion formation by means of kinetic equations, in "Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences" (G. Naldi, L. Pareschi and G. Toscani eds.), (2010), 245-270, Birkhauser, Boston. doi: 10.1007/978-0-8176-4946-3_10.  Google Scholar

[7]

L. Boudin and F. Salvarani, The quasi-invariant limit for a kinetic model of sociological collective behavior, Kinet. Relat. Models, 2 (2009) 433-449. doi: 10.3934/krm.2009.2.433.  Google Scholar

[8]

L. Boudin and F. Salvarani, A kinetic approach to the study of opinion formation, M2AN Math. Model. Numer. Anal., 43 (2009), 507-522. doi: 10.1051/m2an/2009004.  Google Scholar

[9]

C. Canuto, F. Fagnani and P. Tilli, A Eulerian approach to the analysis of rendez-vous algorithms, Proc. of 2008 IFAC Conf., (2008), 9039-9044. Google Scholar

[10]

G. Como and F. Fagnani, Scaling limits for continuous opinion dynamics systems, Ann. Appl. Probab., 21 (2011), 1537-1567. doi: 10.1214/10-AAP739.  Google Scholar

[11]

S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, Journal of Statistical Physics, 120 (2005), 253-277. doi: 10.1007/s10955-005-5456-0.  Google Scholar

[12]

G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Adv. Comp. Sys., 3 (2001), 87-98. doi: 10.1142/S0219525900000078.  Google Scholar

[13]

B. Düring, P. Markowich, J-F. Pietschmann and M-T.Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. Lond. A, 465 (2009)(2112), 3687-3708. doi: 10.1098/rspa.2009.0239.  Google Scholar

[14]

S. Galam, A review of Galam models, Int. J. Mod. Phys. C, 409 (2008), 3687-3708. Google Scholar

[15]

U. Krause, A discrete nonlinear and non-autonomous model of consensus formation, in "Communications in Difference Equations" (S. Elaydi, G. Ladas, J. Popenda and J. Rakowski eds.), Gordon and Breach Science Publ., Amsterdam, (2000) 227-236.  Google Scholar

[16]

J. Lorenz, A stabilization theorem for continuous opinion dynamics, Phys. A, 355 (2005), 217-223. doi: 10.1016/j.physa.2005.02.086.  Google Scholar

[17]

J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey, Internat. J. Modern Phys. C, 18 (2007), 1819-1838. doi: 10.1142/S0129183107011789.  Google Scholar

[18]

S. McNamara and W. R. Young, Kinetics of a one dimensional granular medium in the quasi elastic limit, Phys. Fluids A, 5 (1993), 34-45. doi: 10.1063/1.858896.  Google Scholar

[19]

L. Pareschi and G. Toscani, Self-similarity and power-like tails in nonconservative kinetic models, J. Stat. Phys., 124 (2006), 747-779. doi: 10.1007/s10955-006-9025-y.  Google Scholar

[20]

G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496.  Google Scholar

[21]

G. Weisbuch, G. Deffuant, F. Amblard and J. P. Nadal, Meet, discuss, and segregate!, Complexity, 7 (2002), 55-63. doi: 10.1002/cplx.10031.  Google Scholar

[1]

Sergei Yu. Pilyugin, M. C. Campi. Opinion formation in voting processes under bounded confidence. Networks & Heterogeneous Media, 2019, 14 (3) : 617-632. doi: 10.3934/nhm.2019024

[2]

GuanLin Li, Sebastien Motsch, Dylan Weber. Bounded confidence dynamics and graph control: Enforcing consensus. Networks & Heterogeneous Media, 2020, 15 (3) : 489-517. doi: 10.3934/nhm.2020028

[3]

Ciprian Preda, Petre Preda, Adriana Petre. On the asymptotic behavior of an exponentially bounded, strongly continuous cocycle over a semiflow. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1637-1645. doi: 10.3934/cpaa.2009.8.1637

[4]

Mayte Pérez-Llanos, Juan Pablo Pinasco, Nicolas Saintier. Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations. Networks & Heterogeneous Media, 2021, 16 (2) : 257-281. doi: 10.3934/nhm.2021006

[5]

Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of control-state constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311-336. doi: 10.3934/jimo.2014.10.311

[6]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[7]

Federico Cacciafesta, Anne-Sophie De Suzzoni. Weak dispersion for the Dirac equation on asymptotically flat and warped product spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4359-4398. doi: 10.3934/dcds.2019177

[8]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[9]

Prasanta Kumar Barik, Ankik Kumar Giri. Weak solutions to the continuous coagulation model with collisional breakage. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6115-6133. doi: 10.3934/dcds.2020272

[10]

Oliver Knill. Singular continuous spectrum and quantitative rates of weak mixing. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 33-42. doi: 10.3934/dcds.1998.4.33

[11]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control & Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[12]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[13]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[14]

Pavel Krejčí, Songmu Zheng. Pointwise asymptotic convergence of solutions for a phase separation model. Discrete & Continuous Dynamical Systems, 2006, 16 (1) : 1-18. doi: 10.3934/dcds.2006.16.1

[15]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[16]

George Siopsis. Quantum topological data analysis with continuous variables. Foundations of Data Science, 2019, 1 (4) : 419-431. doi: 10.3934/fods.2019017

[17]

Ján Eliaš, Masayasu Mimura, Ryunosuke Mori. Asymptotic behavior of solutions of Aoki-Shida-Shigesada model in bounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1917-1930. doi: 10.3934/dcdsb.2020082

[18]

Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725

[19]

Ming Mei, Bruno Rubino, Rosella Sampalmieri. Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain. Kinetic & Related Models, 2012, 5 (3) : 537-550. doi: 10.3934/krm.2012.5.537

[20]

Moncef Aouadi, Taoufik Moulahi. Asymptotic analysis of a nonsimple thermoelastic rod. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1475-1492. doi: 10.3934/dcdss.2016059

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]