July  2013, 12(4): 1569-1585. doi: 10.3934/cpaa.2013.12.1569

Uniqueness for elliptic problems with Hölder--type dependence on the solution

1. 

Dipartimento di Matematica, Università di Roma 1, Piazza A. Moro 2, 00185 Roma

2. 

Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scienti ca 1, 00133 Roma

Received  May 2011 Revised  June 2012 Published  November 2012

We prove uniqueness of weak (or entropy) solutions for nonmonotone elliptic equations of the type \begin{eqnarray} -div (a(x,u)\nabla u)=f \end{eqnarray} in a bounded set $\Omega\subset R^N$ with Dirichlet boundary conditions. The novelty of our results consists in the possibility to deal with cases when $a(x,u)$ is only Hölder continuous with respect to $u$.
Citation: Lucio Boccardo, Alessio Porretta. Uniqueness for elliptic problems with Hölder--type dependence on the solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1569-1585. doi: 10.3934/cpaa.2013.12.1569
References:
[1]

M. Artola, Sur une classe de problèmes paraboliques quasi-linéaires,, Boll. U.M.I. B., 5 (1986), 51.   Google Scholar

[2]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vàzquez, An $L^1$ theory of existence and uniqueness of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240.   Google Scholar

[3]

D. Blanchard, F. Désir and O. Guibé, Quasi-linear degenerate elliptic problems with $L^1$ data,, Nonlinear Anal., 60 (2005), 557.  doi: 10.1016/S0362-546X(04)00395-5.  Google Scholar

[4]

L. Boccardo, Some nonlinear Dirichlet problems in $L^1$ involving lower order terms in divergence form,, Progress in elliptic and parabolic partial differential equations (Capri, (1994), 43.   Google Scholar

[5]

L. Boccardo, Uniqueness of solutions for some nonlinear Dirichlet problems,, dedicated to M. Artola, ().   Google Scholar

[6]

L. Boccardo, A remark on some nonlinear elliptic problems,, 2001-Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems, Conf. 08 (2002), 47.   Google Scholar

[7]

L. Boccardo and B. Dacorogna, Monotonicity of certain differential operators in divergence form,, Manuscripta Math., 64 (1989), 253.  doi: 10.1007/BF01160123.  Google Scholar

[8]

L. Boccardo, I. Diaz, D. Giachetti and F. Murat, Existence of a solution for a weaker form of a nonlinear elliptic equation,, in, 208 (1988), 229.   Google Scholar

[9]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures,, Comm. P.D.E., 17 (1992), 641.  doi: 10.1080/03605309208820857.  Google Scholar

[10]

L. Boccardo, T. Gallouët and F. Murat, Unicité de la solution pour des equations elliptiques non linéaires,, C. R. Acad. Sc. Paris, 315 (1992), 1159.   Google Scholar

[11]

J. Carrillo and M. Chipot, On some elliptic equations involving derivatives of the nonlinearity,, Proc. Roy. Soc. Edinburgh, 100 (1985), 281.  doi: 10.1017/S0308210500013822.  Google Scholar

[12]

J. Casado Diaz, F. Murat and A. Porretta, Uniqueness results for pseudomonotone problems with $p>2$,, C. R. Math. Acad. Sci. Paris, 344 (2007), 487.  doi: 10.1016/j.crma.2007.02.007.  Google Scholar

[13]

M. Chipot and G. Michaille, Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities,, Ann. Sc. Norm. Sup. Pisa, 16 (1989), 137.   Google Scholar

[14]

A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the H-convergence of quasi-linear parabolic equations,, Ann. Mat. Pura Appl., 170 (1996), 207.  doi: 10.1007/BF01758989.  Google Scholar

[15]

O. Guibé, Uniqueness of the solution to quasilinear elliptic equations under a local condition on the diffusion matrix,, Adv. Math. Sci. Appl., 17 (2007), 357.   Google Scholar

[16]

O. Guibé, Uniqueness of the renormalized solution to a class of nonlinear elliptic equations,, in, 23 (2008), 459.   Google Scholar

[17]

A. G. Kartsatos and I. V. Skrypnik, The index of a critical point for nonlinear elliptic operators with strong coefficient growth,, J. Math. Soc. Japan, 52 (2000), 109.  doi: 10.2969/jmsj/05210109.  Google Scholar

[18]

C. Leone and A. Porretta, Entropy solutions for nonlinear elliptic equations in $ L^1$,, Nonlinear Anal., 32 (1998), 325.  doi: 10.1016/S0362-546X(96)00323-9.  Google Scholar

[19]

M. Marcus and V. J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous,, J. Funct. Anal., 33 (1979), 217.  doi: 10.1016/0022-1236(79)90113-7.  Google Scholar

[20]

A. Porretta, Uniqueness and homogenization for a class of noncoercive operators in divergence form,, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 915.   Google Scholar

[21]

A. Porretta, Uniqueness of solutions for some nonlinear Dirichlet problems,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 407.  doi: 10.1007/s00030-004-0031-y.  Google Scholar

[22]

A. Porretta, Some remarks on the regularity of solutions for a class of elliptic equations with measure data,, Houston J. Math., 26 (2000), 183.   Google Scholar

[23]

M. M. Porzio, A uniqueness result for monotone elliptic problems,, C. R. Math. Acad. Sci. Paris, 337 (2003), 313.  doi: 10.1016/S1631-073X(03)00347-9.  Google Scholar

[24]

N. Trudinger, On the comparison principle for quasilinear divergence structure equations,, Arch. for Rat. Mech. Anal., 57 (1975), 128.  doi: 10.1007/BF00248414.  Google Scholar

show all references

References:
[1]

M. Artola, Sur une classe de problèmes paraboliques quasi-linéaires,, Boll. U.M.I. B., 5 (1986), 51.   Google Scholar

[2]

P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vàzquez, An $L^1$ theory of existence and uniqueness of nonlinear elliptic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240.   Google Scholar

[3]

D. Blanchard, F. Désir and O. Guibé, Quasi-linear degenerate elliptic problems with $L^1$ data,, Nonlinear Anal., 60 (2005), 557.  doi: 10.1016/S0362-546X(04)00395-5.  Google Scholar

[4]

L. Boccardo, Some nonlinear Dirichlet problems in $L^1$ involving lower order terms in divergence form,, Progress in elliptic and parabolic partial differential equations (Capri, (1994), 43.   Google Scholar

[5]

L. Boccardo, Uniqueness of solutions for some nonlinear Dirichlet problems,, dedicated to M. Artola, ().   Google Scholar

[6]

L. Boccardo, A remark on some nonlinear elliptic problems,, 2001-Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems, Conf. 08 (2002), 47.   Google Scholar

[7]

L. Boccardo and B. Dacorogna, Monotonicity of certain differential operators in divergence form,, Manuscripta Math., 64 (1989), 253.  doi: 10.1007/BF01160123.  Google Scholar

[8]

L. Boccardo, I. Diaz, D. Giachetti and F. Murat, Existence of a solution for a weaker form of a nonlinear elliptic equation,, in, 208 (1988), 229.   Google Scholar

[9]

L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures,, Comm. P.D.E., 17 (1992), 641.  doi: 10.1080/03605309208820857.  Google Scholar

[10]

L. Boccardo, T. Gallouët and F. Murat, Unicité de la solution pour des equations elliptiques non linéaires,, C. R. Acad. Sc. Paris, 315 (1992), 1159.   Google Scholar

[11]

J. Carrillo and M. Chipot, On some elliptic equations involving derivatives of the nonlinearity,, Proc. Roy. Soc. Edinburgh, 100 (1985), 281.  doi: 10.1017/S0308210500013822.  Google Scholar

[12]

J. Casado Diaz, F. Murat and A. Porretta, Uniqueness results for pseudomonotone problems with $p>2$,, C. R. Math. Acad. Sci. Paris, 344 (2007), 487.  doi: 10.1016/j.crma.2007.02.007.  Google Scholar

[13]

M. Chipot and G. Michaille, Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities,, Ann. Sc. Norm. Sup. Pisa, 16 (1989), 137.   Google Scholar

[14]

A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the H-convergence of quasi-linear parabolic equations,, Ann. Mat. Pura Appl., 170 (1996), 207.  doi: 10.1007/BF01758989.  Google Scholar

[15]

O. Guibé, Uniqueness of the solution to quasilinear elliptic equations under a local condition on the diffusion matrix,, Adv. Math. Sci. Appl., 17 (2007), 357.   Google Scholar

[16]

O. Guibé, Uniqueness of the renormalized solution to a class of nonlinear elliptic equations,, in, 23 (2008), 459.   Google Scholar

[17]

A. G. Kartsatos and I. V. Skrypnik, The index of a critical point for nonlinear elliptic operators with strong coefficient growth,, J. Math. Soc. Japan, 52 (2000), 109.  doi: 10.2969/jmsj/05210109.  Google Scholar

[18]

C. Leone and A. Porretta, Entropy solutions for nonlinear elliptic equations in $ L^1$,, Nonlinear Anal., 32 (1998), 325.  doi: 10.1016/S0362-546X(96)00323-9.  Google Scholar

[19]

M. Marcus and V. J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous,, J. Funct. Anal., 33 (1979), 217.  doi: 10.1016/0022-1236(79)90113-7.  Google Scholar

[20]

A. Porretta, Uniqueness and homogenization for a class of noncoercive operators in divergence form,, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 915.   Google Scholar

[21]

A. Porretta, Uniqueness of solutions for some nonlinear Dirichlet problems,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 407.  doi: 10.1007/s00030-004-0031-y.  Google Scholar

[22]

A. Porretta, Some remarks on the regularity of solutions for a class of elliptic equations with measure data,, Houston J. Math., 26 (2000), 183.   Google Scholar

[23]

M. M. Porzio, A uniqueness result for monotone elliptic problems,, C. R. Math. Acad. Sci. Paris, 337 (2003), 313.  doi: 10.1016/S1631-073X(03)00347-9.  Google Scholar

[24]

N. Trudinger, On the comparison principle for quasilinear divergence structure equations,, Arch. for Rat. Mech. Anal., 57 (1975), 128.  doi: 10.1007/BF00248414.  Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[3]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[14]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[15]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[16]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[19]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[20]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]