Citation: |
[1] |
M. Artola, Sur une classe de problèmes paraboliques quasi-linéaires, Boll. U.M.I. B., 5 (1986), 51-70. |
[2] |
P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vàzquez, An $L^1$ theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240-273. |
[3] |
D. Blanchard, F. Désir and O. Guibé, Quasi-linear degenerate elliptic problems with $L^1$ data, Nonlinear Anal., 60 (2005), 557-587.doi: 10.1016/S0362-546X(04)00395-5. |
[4] |
L. Boccardo, Some nonlinear Dirichlet problems in $L^1$ involving lower order terms in divergence form, Progress in elliptic and parabolic partial differential equations (Capri, 1994), 43-57. |
[5] |
L. Boccardo, Uniqueness of solutions for some nonlinear Dirichlet problems, dedicated to M. Artola, unpublished. |
[6] |
L. Boccardo, A remark on some nonlinear elliptic problems, 2001-Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems, Electron. J. Diff. Eqns. Conf. 08, (2002), 47-52. |
[7] |
L. Boccardo and B. Dacorogna, Monotonicity of certain differential operators in divergence form, Manuscripta Math., 64 (1989), 253-260.doi: 10.1007/BF01160123. |
[8] |
L. Boccardo, I. Diaz, D. Giachetti and F. Murat, Existence of a solution for a weaker form of a nonlinear elliptic equation, in "Recent Advances in Nonlinear Elliptic and Parabolic Problems" (Nancy, 1988), Pitman Res. Notes Math. Ser. 208, 229-246, Longman, 1989. |
[9] |
L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures, Comm. P.D.E., 17 (1992), 641-655.doi: 10.1080/03605309208820857. |
[10] |
L. Boccardo, T. Gallouët and F. Murat, Unicité de la solution pour des equations elliptiques non linéaires, C. R. Acad. Sc. Paris, 315 (1992), 1159-1164. |
[11] |
J. Carrillo and M. Chipot, On some elliptic equations involving derivatives of the nonlinearity, Proc. Roy. Soc. Edinburgh, 100 (1985), 281-294.doi: 10.1017/S0308210500013822. |
[12] |
J. Casado Diaz, F. Murat and A. Porretta, Uniqueness results for pseudomonotone problems with $p>2$, C. R. Math. Acad. Sci. Paris, 344 (2007), 487-492.doi: 10.1016/j.crma.2007.02.007. |
[13] |
M. Chipot and G. Michaille, Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. Sc. Norm. Sup. Pisa, 16 (1989), 137-166. |
[14] |
A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the H-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207-240.doi: 10.1007/BF01758989. |
[15] |
O. Guibé, Uniqueness of the solution to quasilinear elliptic equations under a local condition on the diffusion matrix, Adv. Math. Sci. Appl., 17 (2007), 357-368. |
[16] |
O. Guibé, Uniqueness of the renormalized solution to a class of nonlinear elliptic equations, in "On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments," Quaderni di Matematica 23, 459-497. Department of Mathematics, Seconda Universit\`a di Napoli, Caserta, 2008. |
[17] |
A. G. Kartsatos and I. V. Skrypnik, The index of a critical point for nonlinear elliptic operators with strong coefficient growth, J. Math. Soc. Japan, 52 (2000), 109-137.doi: 10.2969/jmsj/05210109. |
[18] |
C. Leone and A. Porretta, Entropy solutions for nonlinear elliptic equations in $ L^1$, Nonlinear Anal., 32 (1998), 325-334.doi: 10.1016/S0362-546X(96)00323-9. |
[19] |
M. Marcus and V. J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal., 33 (1979), 217-229.doi: 10.1016/0022-1236(79)90113-7. |
[20] |
A. Porretta, Uniqueness and homogenization for a class of noncoercive operators in divergence form, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 915-936. |
[21] |
A. Porretta, Uniqueness of solutions for some nonlinear Dirichlet problems, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 407-430.doi: 10.1007/s00030-004-0031-y. |
[22] |
A. Porretta, Some remarks on the regularity of solutions for a class of elliptic equations with measure data, Houston J. Math., 26 (2000), 183-213. |
[23] |
M. M. Porzio, A uniqueness result for monotone elliptic problems, C. R. Math. Acad. Sci. Paris, 337 (2003), 313-316.doi: 10.1016/S1631-073X(03)00347-9. |
[24] |
N. Trudinger, On the comparison principle for quasilinear divergence structure equations, Arch. for Rat. Mech. Anal., 57 (1975), 128-133.doi: 10.1007/BF00248414. |