\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniqueness for elliptic problems with Hölder--type dependence on the solution

Abstract / Introduction Related Papers Cited by
  • We prove uniqueness of weak (or entropy) solutions for nonmonotone elliptic equations of the type \begin{eqnarray} -div (a(x,u)\nabla u)=f \end{eqnarray} in a bounded set $\Omega\subset R^N$ with Dirichlet boundary conditions. The novelty of our results consists in the possibility to deal with cases when $a(x,u)$ is only Hölder continuous with respect to $u$.
    Mathematics Subject Classification: Primary: 35J60; Secondary: 35J65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Artola, Sur une classe de problèmes paraboliques quasi-linéaires, Boll. U.M.I. B., 5 (1986), 51-70.

    [2]

    P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vàzquez, An $L^1$ theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240-273.

    [3]

    D. Blanchard, F. Désir and O. Guibé, Quasi-linear degenerate elliptic problems with $L^1$ data, Nonlinear Anal., 60 (2005), 557-587.doi: 10.1016/S0362-546X(04)00395-5.

    [4]

    L. Boccardo, Some nonlinear Dirichlet problems in $L^1$ involving lower order terms in divergence form, Progress in elliptic and parabolic partial differential equations (Capri, 1994), 43-57.

    [5]

    L. BoccardoUniqueness of solutions for some nonlinear Dirichlet problems, dedicated to M. Artola, unpublished.

    [6]

    L. Boccardo, A remark on some nonlinear elliptic problems, 2001-Luminy Conference on Quasilinear Elliptic and Parabolic Equations and Systems, Electron. J. Diff. Eqns. Conf. 08, (2002), 47-52.

    [7]

    L. Boccardo and B. Dacorogna, Monotonicity of certain differential operators in divergence form, Manuscripta Math., 64 (1989), 253-260.doi: 10.1007/BF01160123.

    [8]

    L. Boccardo, I. Diaz, D. Giachetti and F. Murat, Existence of a solution for a weaker form of a nonlinear elliptic equation, in "Recent Advances in Nonlinear Elliptic and Parabolic Problems" (Nancy, 1988), Pitman Res. Notes Math. Ser. 208, 229-246, Longman, 1989.

    [9]

    L. Boccardo and T. Gallouët, Nonlinear elliptic equations with right hand side measures, Comm. P.D.E., 17 (1992), 641-655.doi: 10.1080/03605309208820857.

    [10]

    L. Boccardo, T. Gallouët and F. Murat, Unicité de la solution pour des equations elliptiques non linéaires, C. R. Acad. Sc. Paris, 315 (1992), 1159-1164.

    [11]

    J. Carrillo and M. Chipot, On some elliptic equations involving derivatives of the nonlinearity, Proc. Roy. Soc. Edinburgh, 100 (1985), 281-294.doi: 10.1017/S0308210500013822.

    [12]

    J. Casado Diaz, F. Murat and A. Porretta, Uniqueness results for pseudomonotone problems with $p>2$, C. R. Math. Acad. Sci. Paris, 344 (2007), 487-492.doi: 10.1016/j.crma.2007.02.007.

    [13]

    M. Chipot and G. Michaille, Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. Sc. Norm. Sup. Pisa, 16 (1989), 137-166.

    [14]

    A. Dall'Aglio, Approximated solutions of equations with $L^1$ data. Application to the H-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207-240.doi: 10.1007/BF01758989.

    [15]

    O. Guibé, Uniqueness of the solution to quasilinear elliptic equations under a local condition on the diffusion matrix, Adv. Math. Sci. Appl., 17 (2007), 357-368.

    [16]

    O. Guibé, Uniqueness of the renormalized solution to a class of nonlinear elliptic equations, in "On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments," Quaderni di Matematica 23, 459-497. Department of Mathematics, Seconda Universit\`a di Napoli, Caserta, 2008.

    [17]

    A. G. Kartsatos and I. V. Skrypnik, The index of a critical point for nonlinear elliptic operators with strong coefficient growth, J. Math. Soc. Japan, 52 (2000), 109-137.doi: 10.2969/jmsj/05210109.

    [18]

    C. Leone and A. Porretta, Entropy solutions for nonlinear elliptic equations in $ L^1$, Nonlinear Anal., 32 (1998), 325-334.doi: 10.1016/S0362-546X(96)00323-9.

    [19]

    M. Marcus and V. J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal., 33 (1979), 217-229.doi: 10.1016/0022-1236(79)90113-7.

    [20]

    A. Porretta, Uniqueness and homogenization for a class of noncoercive operators in divergence form, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 915-936.

    [21]

    A. Porretta, Uniqueness of solutions for some nonlinear Dirichlet problems, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 407-430.doi: 10.1007/s00030-004-0031-y.

    [22]

    A. Porretta, Some remarks on the regularity of solutions for a class of elliptic equations with measure data, Houston J. Math., 26 (2000), 183-213.

    [23]

    M. M. Porzio, A uniqueness result for monotone elliptic problems, C. R. Math. Acad. Sci. Paris, 337 (2003), 313-316.doi: 10.1016/S1631-073X(03)00347-9.

    [24]

    N. Trudinger, On the comparison principle for quasilinear divergence structure equations, Arch. for Rat. Mech. Anal., 57 (1975), 128-133.doi: 10.1007/BF00248414.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(187) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return