July  2013, 12(4): 1587-1633. doi: 10.3934/cpaa.2013.12.1587

On Dirichlet, Poncelet and Abel problems

1. 

Institute of Applied Mathematics, Donetsk, 83114, Ukraine

2. 

Donetsk Institute for Physics and Technology, Donetsk, 83114, Ukraine

Received  June 2011 Revised  June 2011 Published  November 2012

We propose interconnections between some problems of PDE, geometry, algebra, calculus and physics. Uniqueness of a solution of the Dirichlet problem and of some other boundary value problems for the string equation inside an arbitrary biquadratic algebraic curve is considered. It is shown that a solution is non-unique if and only if a corresponding Poncelet problem for two conics has a periodic trajectory. A set of problems is proven to be equivalent to the above problem. Among them are the solvability problem of the algebraic Pell-Abel equation and the indeterminacy problem of a new moment problem that generalizes the well-known trigonometrical moment problem. Solvability criteria of the above-mentioned problems can be represented in form $\theta\in Q$ where number $\theta=m/n$ is built by means of data for a problem to solve. We also demonstrate close relations of the above-mentioned problems to such problems of modern mathematical physics as elliptic solutions of the Toda chain, static solutions of the classical Heisenberg $XY$-chain and biorthogonal rational functions on elliptic grids in the theory of the Padé interpolation.
Citation: Vladimir P. Burskii, Alexei S. Zhedanov. On Dirichlet, Poncelet and Abel problems. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1587-1633. doi: 10.3934/cpaa.2013.12.1587
References:
[1]

N. I. Akhiezer, "Elements of the Theory of Elliptic Functions,", 2nd edition, 79 (1970).   Google Scholar

[2]

N. I. Akhiezer, "Lectures on Approximation Theory,", Nauka, (1965).   Google Scholar

[3]

R. A. Alexandrjan, On the Dirichlet problem for the string equation and on completeness of a system of function in a disk,, Doklady AN USSR., 73 (1950).   Google Scholar

[4]

R. A. Alexandrjan, Spectral properties of operators generated by systems differential equations of Sobolev type,, Trudy Mosc. Math. Obshchestva, 9 (1960), 455.   Google Scholar

[5]

G. S. Akopyan and R. A. Aleksandryan, On the completeness of a system of eigen- and vector-polynomials of a linear differential operator pencil in ellipsoidal domains,, Dokl. Akad. Nauk Arm. SSR, 86 (1988), 147.   Google Scholar

[6]

V. I. Arnold, Small demominators. I, Izvestija AN SSSR, serija matematicheskaja,, {\bf 25} (1961), 25 (1961), 21.   Google Scholar

[7]

R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials,, Mem. Amer. Math. Soc., 54 (1985), 1.   Google Scholar

[8]

G. A. Baker and P. Graves-Morris, Padé approximants. Parts I and II,, in, 13, 14 (1981).   Google Scholar

[9]

H. Bateman and A. Erdélyi, "Higher Transcendental Functions,", 3, (1955).   Google Scholar

[10]

R. Baxter, "Exactly Solvable Models in Statistical Mechanics,", London, (1982).   Google Scholar

[11]

M. V. Beloglyadov, On the Dirichlet problem for the vibrating string equation in domain with a bi-quadratic boundary,, Trudy IAMM NASU, 14 (2007), 14.   Google Scholar

[12]

E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its and V. B. Matveev, "Algebro-geometrical Approach to Non-linear Integrable Equations,", Springer Series in Nonlinear Dynamics, (1994).   Google Scholar

[13]

E. D. Belokolos and V. Z. Enolskii, Reduction of Abelian functions and algebraically integrable systems,, Journal of Mathematical Sciences, 106 (2001), 3395.   Google Scholar

[14]

Yu. M. Berezanskii, "Expansion by Eigenfunctions of Selfadjoint Operators,", Naukova Dumka, (1965).   Google Scholar

[15]

M. Berger, "Géométrie,", CEDIC, (1978).   Google Scholar

[16]

M. Berger, "Geometry Revealed, A Jacob's Ladder to Modern Higher Geometry,", Springer, (2010).   Google Scholar

[17]

D. Bourgin and R. Duffin, The Dirlchlet problem for the vibrating string equations,, Bull. Am. Math. Soc., 45 (1939), 851.   Google Scholar

[18]

A. B. Bogatyrev, Chebyshev representation for rational function,, Sbornik Mathematics, 201 (2010), 1579.   Google Scholar

[19]

V. P. Burskii, On solution uniqueness of some boundary value problems for differential equations in domains with algebraic boundary,, Ukr. Math. Journal, 45 (1993), 993.   Google Scholar

[20]

V. P. Burskii, On boundary value problems for differential equations with constant coefficients in a plane domain and a moment problem,, Ukr. Math. Journal, 48 (1993), 1659.   Google Scholar

[21]

V. P. Burskii, "Investigation Methods of Boundary Value Problems for General Differential Equations,", Kiev, (2002).   Google Scholar

[22]

V. P. Burskii and A. S. Zhedanov, On Dirichlet problem for string equation, Poncelet problem, Pell-Abel equation, and some other related problems,, Ukr. Math. Journal, 58 (2006), 487.   Google Scholar

[23]

V. P. Burskii and A. S. Zhedanov, Dirichlet and Neumann problems for string equation, Poncelet problem and Pell-Abel equation,, Symmetry, (2006).   Google Scholar

[24]

V. P. Burskii and A. S. Zhedanov, Boundary value problems for string equation, Poncelet problem, and Pell-Abel equation: links and relations,, Contemporary Mathematics. Fundamental Directions, 16 (2006).   Google Scholar

[25]

A. A. Chernikov, R. Z. Sagdeev and G. M. Zaslavsky, Stochastic webs. Progress in chaotic dynamics,, Phys. D, 33 (1988).   Google Scholar

[26]

O. Egecioglu and C. K. Koc, A fast algorithm for rational interpolation via orthogonal polynomials,, Math. Comp., 53 (1989), 249.   Google Scholar

[27]

A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, "Higher Transcendental Functions. I,", McGraw-Hill, (1953).   Google Scholar

[28]

M. V. Fokin, Solvability of the Dirichlet problem for the string equation,, Doklady AN SSSR, 272 (1983), 801.   Google Scholar

[29]

J. P. Francoise and O. Ragnisco, An iterative process on quartics and integrable symplectic maps,, in, (1998).   Google Scholar

[30]

Ya. I. Granovskii and A. S. Zhedanov, Integrability of the classical $XY$-chain,, Pis'ma to Zh. Exp. Theor. Phys., 44 (1986), 237.   Google Scholar

[31]

P. Griffiths and J. Harris, Poncelet theorem in space,, Comment. Math. Helvetici, 52 (1977), 145.   Google Scholar

[32]

P. Griffiths and J. Harris, On a Cayley's explicit solution to Poncelet's porism,, Enseign. Math., 24 (1978), 31.   Google Scholar

[33]

P. Griffiths and J. Harris, "Principles of Algebraic Geometry,", v. I, (1978).   Google Scholar

[34]

J. Hadamard, Equations aux derivees partielles,, L`Enseignment Mathematique, 36 (1936), 25.   Google Scholar

[35]

G. H. Halphen, "Traité des Fonctions Elliptiques et de Leures Applications,", II, (1886).   Google Scholar

[36]

A. Huber, Erste Randwertaufgabe fur geschlossene Bereiche bei der Gleichung $U_{xy}=f(x,y)$,, Monatshefte f\, 39 (1932), 79.   Google Scholar

[37]

E. L. Ince, Ordinary differential equations, ., ().   Google Scholar

[38]

F. John, The Dirichlet problem for a hyperbolic equation,, Am. J. Math., 63 (1941), 141.   Google Scholar

[39]

A. Iatrou and J. A. G. Roberts, Integrable mappings of the plane preseving biquadratic invariants curves II,, Nonlinearity, 15 (2002), 459.   Google Scholar

[40]

A. Iatrou, Real Jacobian elliptic function parameterization for a genuinely asymmetric biquadratic curve,, arXiv: nlin. SI/0306051 v1 25, (2003).   Google Scholar

[41]

S. M. Kerawala, Poncelet Porism in Two Circles,, Bull. Calcutta Math. Soc., 39 (1947), 85.   Google Scholar

[42]

J. L. King, Three problems in search of a measure,, Amer. Math. Monthly, 101 (1994), 609.   Google Scholar

[43]

M. M. Lavrent'ev, Mathematical problems of tomography and hyperbolic mappings,, Sib. Math. J., 42 (2001), 916.   Google Scholar

[44]

V. F. Lazutkin, "KAM Theory and Semiclassical Approximation to Eigenfunctions,", Springer Verlag, (1993).   Google Scholar

[45]

A. Magnus, Rational interpolation to solutions of Riccati difference equations on elliptic lattices,, Preprint http://www.math.ucl.ac.be/membres/magnus/., ().   Google Scholar

[46]

V. A. Malyshev, Abel equation,, Algebra and Analysis, 13 (2001), 1.   Google Scholar

[47]

J. Meinguet, On the solubility of the Cauchy interpolation problem,, Approximation Theory (Proc. Sympos., (1969), 137.   Google Scholar

[48]

L. J. Mordell, "Diophantine Equations,", Academic Press, (1969).   Google Scholar

[49]

Z. Nitecki, "Differentiable Dinamics,", MIT Press, (1971).   Google Scholar

[50]

S. G. Ovsepjan, On ergodisity of continuous automorphizms and solution uniqueness of the Dirichlet problem for the string equation. II,, Izv. AN Arm. SSR., 2 (1967), 195.   Google Scholar

[51]

B. Yo. Ptashnik, Incorrect boundary value problems for differential equations with partual derivatives,, Kiev, (1984).   Google Scholar

[52]

J. F. Ritt, Periodic functions with a multiplication theorem,, Trans. Amer. Math. Soc., 23 (1922), 16.   Google Scholar

[53]

I. J. Schoenberg, On Jacobi-Bertrand's proof of a theorem of Poncelet,, in, (1983), 623.   Google Scholar

[54]

L. M. Sodin and P. M. Yuditskii, Functions least deviating from zero on closed sets of real axis,, Algebra and Analysis, 4 (): 1.   Google Scholar

[55]

V. Spiridonov and A. Zhedanov, Spectral transformation chains and some new biorthogonal rational functions,, Commun. Math. Phys., 210 (2000), 49.   Google Scholar

[56]

V. P. Spiridonov and A. S. Zhedanov, To the theory of biorthogonal rational functions,, RIMS Kokyuroku, 1302 (2003), 172.   Google Scholar

[57]

V. Spiridonov and A. Zhedanov, Elliptic grids, rational functions, and Padé interpolation,, Ramanujan J., 13 (2007), 285.   Google Scholar

[58]

T. Stieltjes, Sur l'équation d'Euler,, Bul.Sci.Math., 12 (1888), 222.   Google Scholar

[59]

A. A. Telitsyna, The Dirichlet problem for wave equation in plane domain with biquadratic boundary,, Trudy IAMM NASU, (2007), 198.   Google Scholar

[60]

M. Toda, "Theory of Nonlinear Lattices,", Springer Series in Solid-State Sciences, 20 (1989).   Google Scholar

[61]

A. P. Veselov, Integrable systems with discrete time and difference operators,, Functional Analysis and its Applications, 22 (1988), 1.   Google Scholar

[62]

A. P. Veselov, Integrable maps,, Russian Math. Surveys, 46 (1991), 1.   Google Scholar

[63]

L. Vinet and A. Zhedanov, Generalized Bochner theorem: characterization of the Askey-Wilson polynomials,, J. Comput. Appl. Math., 211 (2008), 45.   Google Scholar

[64]

T. I. Zelenjak, Selected topics of quality theory of equations with partial derivatives,, Novosibirsk: NGU, (1970).   Google Scholar

[65]

A. Zhedanov, Biorthogonal rational functions and the generalized eigenvalue problem,, J. Approx. Theory, 101 (1999), 303.   Google Scholar

[66]

A. Zhedanov, Padé interpolation table and biorthogonal rational functions,, Proceedings of the Workshop on Elliptic Integrable Systems November 8-11, (2004), 8.   Google Scholar

[67]

http:, //en.wikipedia.org/wiki/Archimedes, ., ().   Google Scholar

show all references

References:
[1]

N. I. Akhiezer, "Elements of the Theory of Elliptic Functions,", 2nd edition, 79 (1970).   Google Scholar

[2]

N. I. Akhiezer, "Lectures on Approximation Theory,", Nauka, (1965).   Google Scholar

[3]

R. A. Alexandrjan, On the Dirichlet problem for the string equation and on completeness of a system of function in a disk,, Doklady AN USSR., 73 (1950).   Google Scholar

[4]

R. A. Alexandrjan, Spectral properties of operators generated by systems differential equations of Sobolev type,, Trudy Mosc. Math. Obshchestva, 9 (1960), 455.   Google Scholar

[5]

G. S. Akopyan and R. A. Aleksandryan, On the completeness of a system of eigen- and vector-polynomials of a linear differential operator pencil in ellipsoidal domains,, Dokl. Akad. Nauk Arm. SSR, 86 (1988), 147.   Google Scholar

[6]

V. I. Arnold, Small demominators. I, Izvestija AN SSSR, serija matematicheskaja,, {\bf 25} (1961), 25 (1961), 21.   Google Scholar

[7]

R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials,, Mem. Amer. Math. Soc., 54 (1985), 1.   Google Scholar

[8]

G. A. Baker and P. Graves-Morris, Padé approximants. Parts I and II,, in, 13, 14 (1981).   Google Scholar

[9]

H. Bateman and A. Erdélyi, "Higher Transcendental Functions,", 3, (1955).   Google Scholar

[10]

R. Baxter, "Exactly Solvable Models in Statistical Mechanics,", London, (1982).   Google Scholar

[11]

M. V. Beloglyadov, On the Dirichlet problem for the vibrating string equation in domain with a bi-quadratic boundary,, Trudy IAMM NASU, 14 (2007), 14.   Google Scholar

[12]

E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its and V. B. Matveev, "Algebro-geometrical Approach to Non-linear Integrable Equations,", Springer Series in Nonlinear Dynamics, (1994).   Google Scholar

[13]

E. D. Belokolos and V. Z. Enolskii, Reduction of Abelian functions and algebraically integrable systems,, Journal of Mathematical Sciences, 106 (2001), 3395.   Google Scholar

[14]

Yu. M. Berezanskii, "Expansion by Eigenfunctions of Selfadjoint Operators,", Naukova Dumka, (1965).   Google Scholar

[15]

M. Berger, "Géométrie,", CEDIC, (1978).   Google Scholar

[16]

M. Berger, "Geometry Revealed, A Jacob's Ladder to Modern Higher Geometry,", Springer, (2010).   Google Scholar

[17]

D. Bourgin and R. Duffin, The Dirlchlet problem for the vibrating string equations,, Bull. Am. Math. Soc., 45 (1939), 851.   Google Scholar

[18]

A. B. Bogatyrev, Chebyshev representation for rational function,, Sbornik Mathematics, 201 (2010), 1579.   Google Scholar

[19]

V. P. Burskii, On solution uniqueness of some boundary value problems for differential equations in domains with algebraic boundary,, Ukr. Math. Journal, 45 (1993), 993.   Google Scholar

[20]

V. P. Burskii, On boundary value problems for differential equations with constant coefficients in a plane domain and a moment problem,, Ukr. Math. Journal, 48 (1993), 1659.   Google Scholar

[21]

V. P. Burskii, "Investigation Methods of Boundary Value Problems for General Differential Equations,", Kiev, (2002).   Google Scholar

[22]

V. P. Burskii and A. S. Zhedanov, On Dirichlet problem for string equation, Poncelet problem, Pell-Abel equation, and some other related problems,, Ukr. Math. Journal, 58 (2006), 487.   Google Scholar

[23]

V. P. Burskii and A. S. Zhedanov, Dirichlet and Neumann problems for string equation, Poncelet problem and Pell-Abel equation,, Symmetry, (2006).   Google Scholar

[24]

V. P. Burskii and A. S. Zhedanov, Boundary value problems for string equation, Poncelet problem, and Pell-Abel equation: links and relations,, Contemporary Mathematics. Fundamental Directions, 16 (2006).   Google Scholar

[25]

A. A. Chernikov, R. Z. Sagdeev and G. M. Zaslavsky, Stochastic webs. Progress in chaotic dynamics,, Phys. D, 33 (1988).   Google Scholar

[26]

O. Egecioglu and C. K. Koc, A fast algorithm for rational interpolation via orthogonal polynomials,, Math. Comp., 53 (1989), 249.   Google Scholar

[27]

A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, "Higher Transcendental Functions. I,", McGraw-Hill, (1953).   Google Scholar

[28]

M. V. Fokin, Solvability of the Dirichlet problem for the string equation,, Doklady AN SSSR, 272 (1983), 801.   Google Scholar

[29]

J. P. Francoise and O. Ragnisco, An iterative process on quartics and integrable symplectic maps,, in, (1998).   Google Scholar

[30]

Ya. I. Granovskii and A. S. Zhedanov, Integrability of the classical $XY$-chain,, Pis'ma to Zh. Exp. Theor. Phys., 44 (1986), 237.   Google Scholar

[31]

P. Griffiths and J. Harris, Poncelet theorem in space,, Comment. Math. Helvetici, 52 (1977), 145.   Google Scholar

[32]

P. Griffiths and J. Harris, On a Cayley's explicit solution to Poncelet's porism,, Enseign. Math., 24 (1978), 31.   Google Scholar

[33]

P. Griffiths and J. Harris, "Principles of Algebraic Geometry,", v. I, (1978).   Google Scholar

[34]

J. Hadamard, Equations aux derivees partielles,, L`Enseignment Mathematique, 36 (1936), 25.   Google Scholar

[35]

G. H. Halphen, "Traité des Fonctions Elliptiques et de Leures Applications,", II, (1886).   Google Scholar

[36]

A. Huber, Erste Randwertaufgabe fur geschlossene Bereiche bei der Gleichung $U_{xy}=f(x,y)$,, Monatshefte f\, 39 (1932), 79.   Google Scholar

[37]

E. L. Ince, Ordinary differential equations, ., ().   Google Scholar

[38]

F. John, The Dirichlet problem for a hyperbolic equation,, Am. J. Math., 63 (1941), 141.   Google Scholar

[39]

A. Iatrou and J. A. G. Roberts, Integrable mappings of the plane preseving biquadratic invariants curves II,, Nonlinearity, 15 (2002), 459.   Google Scholar

[40]

A. Iatrou, Real Jacobian elliptic function parameterization for a genuinely asymmetric biquadratic curve,, arXiv: nlin. SI/0306051 v1 25, (2003).   Google Scholar

[41]

S. M. Kerawala, Poncelet Porism in Two Circles,, Bull. Calcutta Math. Soc., 39 (1947), 85.   Google Scholar

[42]

J. L. King, Three problems in search of a measure,, Amer. Math. Monthly, 101 (1994), 609.   Google Scholar

[43]

M. M. Lavrent'ev, Mathematical problems of tomography and hyperbolic mappings,, Sib. Math. J., 42 (2001), 916.   Google Scholar

[44]

V. F. Lazutkin, "KAM Theory and Semiclassical Approximation to Eigenfunctions,", Springer Verlag, (1993).   Google Scholar

[45]

A. Magnus, Rational interpolation to solutions of Riccati difference equations on elliptic lattices,, Preprint http://www.math.ucl.ac.be/membres/magnus/., ().   Google Scholar

[46]

V. A. Malyshev, Abel equation,, Algebra and Analysis, 13 (2001), 1.   Google Scholar

[47]

J. Meinguet, On the solubility of the Cauchy interpolation problem,, Approximation Theory (Proc. Sympos., (1969), 137.   Google Scholar

[48]

L. J. Mordell, "Diophantine Equations,", Academic Press, (1969).   Google Scholar

[49]

Z. Nitecki, "Differentiable Dinamics,", MIT Press, (1971).   Google Scholar

[50]

S. G. Ovsepjan, On ergodisity of continuous automorphizms and solution uniqueness of the Dirichlet problem for the string equation. II,, Izv. AN Arm. SSR., 2 (1967), 195.   Google Scholar

[51]

B. Yo. Ptashnik, Incorrect boundary value problems for differential equations with partual derivatives,, Kiev, (1984).   Google Scholar

[52]

J. F. Ritt, Periodic functions with a multiplication theorem,, Trans. Amer. Math. Soc., 23 (1922), 16.   Google Scholar

[53]

I. J. Schoenberg, On Jacobi-Bertrand's proof of a theorem of Poncelet,, in, (1983), 623.   Google Scholar

[54]

L. M. Sodin and P. M. Yuditskii, Functions least deviating from zero on closed sets of real axis,, Algebra and Analysis, 4 (): 1.   Google Scholar

[55]

V. Spiridonov and A. Zhedanov, Spectral transformation chains and some new biorthogonal rational functions,, Commun. Math. Phys., 210 (2000), 49.   Google Scholar

[56]

V. P. Spiridonov and A. S. Zhedanov, To the theory of biorthogonal rational functions,, RIMS Kokyuroku, 1302 (2003), 172.   Google Scholar

[57]

V. Spiridonov and A. Zhedanov, Elliptic grids, rational functions, and Padé interpolation,, Ramanujan J., 13 (2007), 285.   Google Scholar

[58]

T. Stieltjes, Sur l'équation d'Euler,, Bul.Sci.Math., 12 (1888), 222.   Google Scholar

[59]

A. A. Telitsyna, The Dirichlet problem for wave equation in plane domain with biquadratic boundary,, Trudy IAMM NASU, (2007), 198.   Google Scholar

[60]

M. Toda, "Theory of Nonlinear Lattices,", Springer Series in Solid-State Sciences, 20 (1989).   Google Scholar

[61]

A. P. Veselov, Integrable systems with discrete time and difference operators,, Functional Analysis and its Applications, 22 (1988), 1.   Google Scholar

[62]

A. P. Veselov, Integrable maps,, Russian Math. Surveys, 46 (1991), 1.   Google Scholar

[63]

L. Vinet and A. Zhedanov, Generalized Bochner theorem: characterization of the Askey-Wilson polynomials,, J. Comput. Appl. Math., 211 (2008), 45.   Google Scholar

[64]

T. I. Zelenjak, Selected topics of quality theory of equations with partial derivatives,, Novosibirsk: NGU, (1970).   Google Scholar

[65]

A. Zhedanov, Biorthogonal rational functions and the generalized eigenvalue problem,, J. Approx. Theory, 101 (1999), 303.   Google Scholar

[66]

A. Zhedanov, Padé interpolation table and biorthogonal rational functions,, Proceedings of the Workshop on Elliptic Integrable Systems November 8-11, (2004), 8.   Google Scholar

[67]

http:, //en.wikipedia.org/wiki/Archimedes, ., ().   Google Scholar

[1]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[2]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[9]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[10]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[11]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[12]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[13]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[14]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[15]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[20]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]