July  2013, 12(4): 1755-1768. doi: 10.3934/cpaa.2013.12.1755

On the temporal decay estimates for the degenerate parabolic system

1. 

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, str. R. Luxemburg 74, Donetsk, 83114, Ukraine

2. 

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Roza Luxemburg st.74, 340114 Donetsk

Received  March 2011 Revised  March 2012 Published  November 2012

We study long-time behavior for the Cauchy problem of degenerate parabolic system which in the scalar case coincides with classical porous media equation. Sharp bounds of the decay in time estimates of a solution and its size of support were established. Moreover, local space-time estimates under the optimal assumption on initial data were proven.
Citation: Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755
References:
[1]

D. Andreucci and E. Di Benedetto, A new approach to initial traces in nonlinear filtration,, Annales Institut H. Poincar\'e Analyse non Lin\'eaire, 7 (1990), 305.   Google Scholar

[2]

D. Andreucci and A. F. Tedeev, Sharp estimates and finite speed of propagation for a Neumann problem in domains narrowing at infinity,, Advances in Differential Equations, 5 (2000), 833.   Google Scholar

[3]

D. Andreucci and A. F. Tedeev, Finite speed of propagation for thin film equations and other higher order parabolic equations with general nonlinearity,, Interfaces and Free Boundaries, 3 (2001), 233.   Google Scholar

[4]

D. Andreucci and A. F. Tedeev, Universal bounds at the blow-up time for nonlinear parabolic equations,, Advances in Differential Equations, 10 (2005), 89.   Google Scholar

[5]

S. Antontsev, J. I. Díaz and S. Shmarev, Energy Methods for Free Boundary Problems: Applications to Non-linear,, in, (2002).   Google Scholar

[6]

Ph. Benilan, M. G. Crandall and M. Pierre, Solutions of the porous medium equation in $R^N$ under optimal conditions on initial values,, Indiana Univ. Math. J., 33 (1984), 51.   Google Scholar

[7]

E. Di Benedetto, "Degenerate Parabolic Equations,", Springer-Verlag, (1993).   Google Scholar

[8]

E. Di Benedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems,, Journal f\, 357 (1985), 1.   Google Scholar

[9]

A. Jüngel, P. A. Markovich and G. Toscani, Decay rate for solutions of degenerate parabolic systems,, J. Diff. Eqns., (2001), 189.   Google Scholar

[10]

A. S. Kalashnikov, Some properties of the qualitative theory of nonlinear degenerate second-order parabolic equations,, Russian Math. Surveys, 42 (1987), 169.   Google Scholar

[11]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", volume 23 of Translation of Mathematical Monographs, (1968).   Google Scholar

[12]

J. L. Vazquez, "The Porous Medium Equation. Mathematical Theory,", Oxford Mathematical Monographs. Clarendon Press, (2007).   Google Scholar

[13]

H. M. Yin, On p-Laplacian type of evolution system and applications to the Bean model in the type-II superconductivity theory,, Quart. appl. Math., 59 (2001), 47.   Google Scholar

[14]

H. M. Yin, A degenerate evolution system modelling Bean's critical-state type-II superconductors,, Discrete and Continuous Dynamical Systems, 8 (2002), 781.   Google Scholar

[15]

H. M. Yin, On degenerate parabolic system,, J. Differential Equations, 245 (2008), 722.   Google Scholar

[16]

H. Yuan, The Cauchy problem for a quasilinear degenerate parabolic system,, Nonlinear Analysis, 23 (1994), 155.   Google Scholar

show all references

References:
[1]

D. Andreucci and E. Di Benedetto, A new approach to initial traces in nonlinear filtration,, Annales Institut H. Poincar\'e Analyse non Lin\'eaire, 7 (1990), 305.   Google Scholar

[2]

D. Andreucci and A. F. Tedeev, Sharp estimates and finite speed of propagation for a Neumann problem in domains narrowing at infinity,, Advances in Differential Equations, 5 (2000), 833.   Google Scholar

[3]

D. Andreucci and A. F. Tedeev, Finite speed of propagation for thin film equations and other higher order parabolic equations with general nonlinearity,, Interfaces and Free Boundaries, 3 (2001), 233.   Google Scholar

[4]

D. Andreucci and A. F. Tedeev, Universal bounds at the blow-up time for nonlinear parabolic equations,, Advances in Differential Equations, 10 (2005), 89.   Google Scholar

[5]

S. Antontsev, J. I. Díaz and S. Shmarev, Energy Methods for Free Boundary Problems: Applications to Non-linear,, in, (2002).   Google Scholar

[6]

Ph. Benilan, M. G. Crandall and M. Pierre, Solutions of the porous medium equation in $R^N$ under optimal conditions on initial values,, Indiana Univ. Math. J., 33 (1984), 51.   Google Scholar

[7]

E. Di Benedetto, "Degenerate Parabolic Equations,", Springer-Verlag, (1993).   Google Scholar

[8]

E. Di Benedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems,, Journal f\, 357 (1985), 1.   Google Scholar

[9]

A. Jüngel, P. A. Markovich and G. Toscani, Decay rate for solutions of degenerate parabolic systems,, J. Diff. Eqns., (2001), 189.   Google Scholar

[10]

A. S. Kalashnikov, Some properties of the qualitative theory of nonlinear degenerate second-order parabolic equations,, Russian Math. Surveys, 42 (1987), 169.   Google Scholar

[11]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", volume 23 of Translation of Mathematical Monographs, (1968).   Google Scholar

[12]

J. L. Vazquez, "The Porous Medium Equation. Mathematical Theory,", Oxford Mathematical Monographs. Clarendon Press, (2007).   Google Scholar

[13]

H. M. Yin, On p-Laplacian type of evolution system and applications to the Bean model in the type-II superconductivity theory,, Quart. appl. Math., 59 (2001), 47.   Google Scholar

[14]

H. M. Yin, A degenerate evolution system modelling Bean's critical-state type-II superconductors,, Discrete and Continuous Dynamical Systems, 8 (2002), 781.   Google Scholar

[15]

H. M. Yin, On degenerate parabolic system,, J. Differential Equations, 245 (2008), 722.   Google Scholar

[16]

H. Yuan, The Cauchy problem for a quasilinear degenerate parabolic system,, Nonlinear Analysis, 23 (1994), 155.   Google Scholar

[1]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[7]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[17]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[18]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[19]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[20]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]