July  2013, 12(4): 1769-1782. doi: 10.3934/cpaa.2013.12.1769

Propagation of singularities of nonlinear heat flow in fissured media

1. 

Institute of Applied Mathematics and Mechanics, 83114 Donetsk

2. 

Laboratoire de Mathématiques et Physique Théorique CNRS UMR 6083, Université François-Rabelais, 37200 Tours, France

Received  June 2011 Revised  June 2012 Published  November 2012

Let $\Gamma=\{\gamma(\tau)\in R^N\times [0,T], \gamma(0)=(0,0)\}$ be $C^{0,1}$ -- space-time curve and continuos function $h(x,t)>0$ in $ R^N\times [0,T]\setminus \Gamma (h(x,t)=0$ on $\Gamma$). We investigate the behaviour as $k\to \infty$ of the fundamental solutions $u_k$ of equation $u_t-\Delta u+h(x,t)u^p=0$, $p>1$, satisfying singular initial condition $u_k(x,0)=k\delta_0$. The main problem is whether the limit $u_\infty$ is still a solution of the above equation with isolated point singularity at $(0,0)$, or singularity set of $u_\infty$ contains some part or all $\Gamma$.
Citation: Andrey Shishkov, Laurent Véron. Propagation of singularities of nonlinear heat flow in fissured media. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1769-1782. doi: 10.3934/cpaa.2013.12.1769
References:
[1]

H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial coinditions,, J. Math. Pures Appl., 62 (1983), 73. Google Scholar

[2]

H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with absorption,, Arch. Rat. Mech. Anal., 95 (1986), 185. Google Scholar

[3]

A. Gmira and L. Véron, Asymptotic behaviour of the solution of a semilinear parabolic equation,, Monat. f\, 94 (1982), 299. Google Scholar

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964). Google Scholar

[5]

O. Ladyshenskaya, V. A. Solonnikov and N. Ural'Ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Math. Monographs, Vol. 23 (1967). Google Scholar

[6]

M. Marcus and L. Véron, Initial trace of positive solutions of some nonlinear parabolic equations,, Comm. Part. Diff. Equ., 24 (1999), 1445. Google Scholar

[7]

M. Marcus and L. Véron, Initial trace of positive solutions to semilinear parabolic inequalities,, Adv. Nonlinear Studies, 2 (2002), 395. Google Scholar

[8]

A. Shishkov and L. Véron, The balance between diffusion and absorption in semilinear parabolic equations,, Rend. Lincei, 18 (2007), 59. Google Scholar

[9]

A. Shishkov and L. Véron, Singular solutions of some nonlinear parabolic equations with spatially inhomogeneous absorption,, Calc. Var. & Part. Diff. Equ., 33 (2008), 343. Google Scholar

[10]

L. Véron, "Singularities of Solutions of Second Order Quasilinear Equations,", Pitman Research Notes in Math, 353 (1996). Google Scholar

show all references

References:
[1]

H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial coinditions,, J. Math. Pures Appl., 62 (1983), 73. Google Scholar

[2]

H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with absorption,, Arch. Rat. Mech. Anal., 95 (1986), 185. Google Scholar

[3]

A. Gmira and L. Véron, Asymptotic behaviour of the solution of a semilinear parabolic equation,, Monat. f\, 94 (1982), 299. Google Scholar

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964). Google Scholar

[5]

O. Ladyshenskaya, V. A. Solonnikov and N. Ural'Ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Math. Monographs, Vol. 23 (1967). Google Scholar

[6]

M. Marcus and L. Véron, Initial trace of positive solutions of some nonlinear parabolic equations,, Comm. Part. Diff. Equ., 24 (1999), 1445. Google Scholar

[7]

M. Marcus and L. Véron, Initial trace of positive solutions to semilinear parabolic inequalities,, Adv. Nonlinear Studies, 2 (2002), 395. Google Scholar

[8]

A. Shishkov and L. Véron, The balance between diffusion and absorption in semilinear parabolic equations,, Rend. Lincei, 18 (2007), 59. Google Scholar

[9]

A. Shishkov and L. Véron, Singular solutions of some nonlinear parabolic equations with spatially inhomogeneous absorption,, Calc. Var. & Part. Diff. Equ., 33 (2008), 343. Google Scholar

[10]

L. Véron, "Singularities of Solutions of Second Order Quasilinear Equations,", Pitman Research Notes in Math, 353 (1996). Google Scholar

[1]

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313

[2]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[3]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[4]

Shota Sato, Eiji Yanagida. Singular backward self-similar solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 897-906. doi: 10.3934/dcdss.2011.4.897

[5]

Chin-Chin Wu, Zhengce Zhang. Dead-core rates for the heat equation with a spatially dependent strong absorption. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2203-2210. doi: 10.3934/dcdsb.2013.18.2203

[6]

Xinfu Chen, Jong-Shenq Guo, Bei Hu. Dead-core rates for the porous medium equation with a strong absorption. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1761-1774. doi: 10.3934/dcdsb.2012.17.1761

[7]

Chunlai Mu, Jun Zhou, Yuhuan Li. Fast rate of dead core for fast diffusion equation with strong absorption. Communications on Pure & Applied Analysis, 2010, 9 (2) : 397-411. doi: 10.3934/cpaa.2010.9.397

[8]

Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275

[9]

Tai Nguyen Phuoc, Laurent Véron. Initial trace of positive solutions of a class of degenerate heat equation with absorption. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2033-2063. doi: 10.3934/dcds.2013.33.2033

[10]

Brooke L. Hollingsworth, R.E. Showalter. Semilinear degenerate parabolic systems and distributed capacitance models. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 59-76. doi: 10.3934/dcds.1995.1.59

[11]

Charles A. Stuart. Stability analysis for a family of degenerate semilinear parabolic problems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5297-5337. doi: 10.3934/dcds.2018234

[12]

Jingxue Yin, Chunhua Jin. Critical exponents and traveling wavefronts of a degenerate-singular parabolic equation in non-divergence form. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 213-227. doi: 10.3934/dcdsb.2010.13.213

[13]

Luisa Moschini, Guillermo Reyes, Alberto Tesei. Nonuniqueness of solutions to semilinear parabolic equations with singular coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 155-179. doi: 10.3934/cpaa.2006.5.155

[14]

Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks & Heterogeneous Media, 2012, 7 (1) : 137-150. doi: 10.3934/nhm.2012.7.137

[15]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[16]

Morteza Fotouhi, Leila Salimi. Controllability results for a class of one dimensional degenerate/singular parabolic equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1415-1430. doi: 10.3934/cpaa.2013.12.1415

[17]

Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617

[18]

Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060

[19]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[20]

Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]