September  2013, 12(5): 1813-1844. doi: 10.3934/cpaa.2013.12.1813

Two-dimensional stability analysis in a HIV model with quadratic logistic growth term

1. 

School of Mathematical Sciences, Xiamen University, 361005 Xiamen, China, and Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33405 Talence cedex

2. 

College of Science, Guizhou University, 550025 Guiyang, China

3. 

Dipartimento di Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy

Received  July 2012 Revised  November 2012 Published  January 2013

We consider a Human Immunode ciency Virus (HIV) model with a logistic growth term and continue the analysis of the previous article [6]. We now take the viral di usion in a two-dimensional environment. The model consists of two ODEs for the concentrations of the target T cells, the infected cells, and a parabolic PDE for the virus particles. We study the stability of the uninfected and infected equilibria, the occurrence of Hopf bifurcation and the stability of the periodic solutions.
Citation: Claude-Michel Brauner, Xinyue Fan, Luca Lorenzi. Two-dimensional stability analysis in a HIV model with quadratic logistic growth term. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1813-1844. doi: 10.3934/cpaa.2013.12.1813
References:
[1]

C.-M. Brauner, D. Jolly, L. Lorenzi and R. Thiébaut, Heterogeneous viral environment in a HIV spatial model,, Discr. Contin. Dyn. Syst. B, 15 (2011), 545.  doi: 10.3934/dcdsb.2011.15.545.  Google Scholar

[2]

M. S. Ciupe, B. L. Bivort, D. M. Bortz and P. W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models,, Math. Biosci., 200 (2006), 1.  doi: 10.1016/j.mbs.2005.12.006.  Google Scholar

[3]

G. Da Prato and A. Lunardi, Stability, instability and center manifold theorem for fully nonlinear autonomous parabolic equations in Banach space,, Arch. Ration. Mech. Anal., 101 (1988), 115.   Google Scholar

[4]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis, and Interpretation,'', John Wiley & Sons, (2000).   Google Scholar

[5]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 ().   Google Scholar

[6]

X. Y. Fan, C.-M. Brauner and L. Wittkop, Mathematical analysis of a HIV model with quadratic logistic growth term,, Discr. Cont. Dyn. Syst. B, 17 (2012), 2359.  doi: 10.3934/dcdsb.2012.17.2359.  Google Scholar

[7]

G. A. Funk, V. A. A. Jansen, S. Bonhoeffer and T. Killingback, Spatial models of virus-immune dynamics,, J. Theor. Biol., 233 (2005), 221.  doi: 10.1016/j.jtbi.2004.10.004.  Google Scholar

[8]

F. R. Gantmakher, "The Theory of Matrices,'', Reprint of the 1959 translation. AMS Chelsea Publishing, (1959).   Google Scholar

[9]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers,'', sixth edition, (2008).   Google Scholar

[10]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Applications of Hopf Bifurcation,'', Cambridge University Press, (1981).   Google Scholar

[11]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,'', Lect. Notes. Math. 61, 61 ().   Google Scholar

[12]

T. Kato, "Perturbation Theory for Linear Operators,", Second edition, 132 (1976).   Google Scholar

[13]

H. B. Keller, Nonexistence and uniqueness of positive solutions of nonlinear eigenvalue problems,, Bull. Amer. Math Soc., 74 (1968), 887.  doi: 10.1090/S0002-9904-1968-12067-1.  Google Scholar

[14]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,'', Birkh\, (1995).   Google Scholar

[15]

J. E. Marsden and M. McCracken, "The Hopf Bifurcation and its Applications,'', Springer-Verlag, (1976).   Google Scholar

[16]

A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+ T cells,, Math. Biosci., 114 (1993), 81.  doi: 10.1016/0025-5564(93)90043-A.  Google Scholar

[17]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-I: dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[18]

K. Wang and W. Wang, Propagation of HBV with spatial dependence,, Math. Biosci., 210 (2007), 78.  doi: 10.1016/j.mbs.2007.05.004.  Google Scholar

show all references

References:
[1]

C.-M. Brauner, D. Jolly, L. Lorenzi and R. Thiébaut, Heterogeneous viral environment in a HIV spatial model,, Discr. Contin. Dyn. Syst. B, 15 (2011), 545.  doi: 10.3934/dcdsb.2011.15.545.  Google Scholar

[2]

M. S. Ciupe, B. L. Bivort, D. M. Bortz and P. W. Nelson, Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models,, Math. Biosci., 200 (2006), 1.  doi: 10.1016/j.mbs.2005.12.006.  Google Scholar

[3]

G. Da Prato and A. Lunardi, Stability, instability and center manifold theorem for fully nonlinear autonomous parabolic equations in Banach space,, Arch. Ration. Mech. Anal., 101 (1988), 115.   Google Scholar

[4]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis, and Interpretation,'', John Wiley & Sons, (2000).   Google Scholar

[5]

K.-J. Engel and R. Nagel, "One-Parameter Semigroups for Linear Evolution Equations,", Graduate Texts in Mathematics, 194 ().   Google Scholar

[6]

X. Y. Fan, C.-M. Brauner and L. Wittkop, Mathematical analysis of a HIV model with quadratic logistic growth term,, Discr. Cont. Dyn. Syst. B, 17 (2012), 2359.  doi: 10.3934/dcdsb.2012.17.2359.  Google Scholar

[7]

G. A. Funk, V. A. A. Jansen, S. Bonhoeffer and T. Killingback, Spatial models of virus-immune dynamics,, J. Theor. Biol., 233 (2005), 221.  doi: 10.1016/j.jtbi.2004.10.004.  Google Scholar

[8]

F. R. Gantmakher, "The Theory of Matrices,'', Reprint of the 1959 translation. AMS Chelsea Publishing, (1959).   Google Scholar

[9]

G. H. Hardy and E. M. Wright, "An Introduction to the Theory of Numbers,'', sixth edition, (2008).   Google Scholar

[10]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Applications of Hopf Bifurcation,'', Cambridge University Press, (1981).   Google Scholar

[11]

D. Henry, "Geometric Theory of Semilinear Parabolic Equations,'', Lect. Notes. Math. 61, 61 ().   Google Scholar

[12]

T. Kato, "Perturbation Theory for Linear Operators,", Second edition, 132 (1976).   Google Scholar

[13]

H. B. Keller, Nonexistence and uniqueness of positive solutions of nonlinear eigenvalue problems,, Bull. Amer. Math Soc., 74 (1968), 887.  doi: 10.1090/S0002-9904-1968-12067-1.  Google Scholar

[14]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,'', Birkh\, (1995).   Google Scholar

[15]

J. E. Marsden and M. McCracken, "The Hopf Bifurcation and its Applications,'', Springer-Verlag, (1976).   Google Scholar

[16]

A. S. Perelson, D. E. Kirschner and R. De Boer, Dynamics of HIV infection of CD4+ T cells,, Math. Biosci., 114 (1993), 81.  doi: 10.1016/0025-5564(93)90043-A.  Google Scholar

[17]

A. S. Perelson and P. W. Nelson, Mathematical analysis of HIV-I: dynamics in vivo,, SIAM Rev., 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[18]

K. Wang and W. Wang, Propagation of HBV with spatial dependence,, Math. Biosci., 210 (2007), 78.  doi: 10.1016/j.mbs.2007.05.004.  Google Scholar

[1]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[2]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[3]

Jaume Llibre, Clàudia Valls. Hopf bifurcation for some analytic differential systems in $\R^3$ via averaging theory. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 779-790. doi: 10.3934/dcds.2011.30.779

[4]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[5]

Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963

[6]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[7]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[8]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[9]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[10]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[11]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[12]

Stefano Bianchini, Alberto Bressan. A center manifold technique for tracing viscous waves. Communications on Pure & Applied Analysis, 2002, 1 (2) : 161-190. doi: 10.3934/cpaa.2002.1.161

[13]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[14]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[15]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[16]

Angela A. Albanese, Elisabetta M. Mangino. Analytic semigroups and some degenerate evolution equations defined on domains with corners. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 595-615. doi: 10.3934/dcds.2015.35.595

[17]

A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97

[18]

Yuri Latushkin, Valerian Yurov. Stability estimates for semigroups on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5203-5216. doi: 10.3934/dcds.2013.33.5203

[19]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[20]

I. Baldomá, Tere M. Seara. The inner equation for generic analytic unfoldings of the Hopf-zero singularity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 323-347. doi: 10.3934/dcdsb.2008.10.323

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]