\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains

Abstract / Introduction Related Papers Cited by
  • We show that on a bounded domain $\Omega\subset R^N$ with Lipschitz continuous boundary $\partial \Omega$, weak solutions of the elliptic equation $\lambda u-Au=f$ in $\Omega$ with the boundary conditions $-\gamma\Delta_\Gamma u+\partial_\nu^a u+\beta u=g$ on $\partial \Omega$ are globally Hölder continuous on $\bar \Omega$. Here $A$ is a uniformly elliptic operator in divergence form with bounded measurable coefficients, $\Delta_\Gamma$ is the Laplace-Beltrami operator on $\partial \Omega$, $\partial_\nu^a u$ denotes the conormal derivative of $u$, $\lambda,\gamma>0$ are real numbers and $\beta$ is a bounded measurable function on $\partial Omega$. We also obtain that a realization of the operator $A$ in $C(\bar \Omega)$ with the general Wentzell boundary conditions $(Au)|_{\partial \Omega}-\gamma\Delta_\Gamma u+\partial_\nu^a u+\beta u=g$ on $\partial \Omega$ generates a strongly continuous compact semigroup. Some analyticity results of the semigroup are also discussed.
    Mathematics Subject Classification: Primary: 35J20, 35B65, 35B45,35K05; Secondary: 47D06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann, Dual semigroup and second order linear elliptic boundary value problems, Israel J. Math., 45 (1983), 225-254.doi: 10.1007/BF02774019.

    [2]

    H. Amann and J. Escher, Strongly continuous dual semigroups, Ann. Mat. Pura Appl., 171 (1996), 41-62.doi: 10.1007/BF01759381.

    [3]

    W. Arendt, G. Metafune, D. Pallara and S. Romanelli, The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions, Semigroup Forum, 67 (2003), 247-261.doi: 10.1007/s00233-002-0010-8.

    [4]

    R. F. Bass and P. Hsu, Some potential theory for reflecting Brownian motion in Hölder and Lipschitz domains, Ann. Probab., 19 (1991), 486-508.doi: 10.1214/aop/1176990437.

    [5]

    M. Biegert and M. Warma, The heat equation with nonlinear generalized Robin boundary conditions, J. Differential Equations, 247 (2009), 1949-1979.doi: 10.1016/j.jde.2009.07.017.

    [6]

    G. M. Coclite, G. R. Goldstein and J. A. Goldstein, Stability of parabolic problems with nonlinear Wentzell boundary conditions, J. Differential Equations, 246 (2009), 2434-2447.doi: 10.1016/j.jde.2008.10.004.

    [7]

    E. B. Davies, "Heat Kernels and Spectral Theory," Cambridge University Press, Cambridge, 1989.doi: 10.1017/CBO9780511566158.

    [8]

    E. De Giorgi, Sulla differenziabilità e analiticità delle estremali degli integral multipli regolari, Men. Accad. Sci. Torino, 3 (1957), 25-43.

    [9]

    K. J. Engel, The Laplacian on $C(\bar \Omega)$ with generalized Wentzell boundary conditions, Arch. Math. (Basel), 81 (2003), 548-558.doi: 10.1007/s00013-003-0557-y.

    [10]

    A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem, Math. Nachr., 283 (2010), 504-521.doi: 10.1002/mana.200910086.

    [11]

    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with Wentzell boundary conditions, J. Evol. Eq., 2 (2002), 1-19.doi: 10.1007/s00028-002-8077-y.

    [12]

    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition, Adv. Differential Equations, 11 (2006), 481-510.

    [13]

    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Classification of general Wentzell boundary conditions for fourth order operators in one space dimension, J. Math. Anal. Appl., 333 (2007), 219-235.doi: 10.1016/j.jmaa.2006.11.058.

    [14]

    M. Fukushima and M. Tomisaki, Reflecting diffusions on Lipschitz domains with cusps: Analytic construction and Skorohod representation, Potential Anal., 4 (1995), 377-408.doi: 10.1007/BF01053454.

    [15]

    M. Fukushima and M. Tomisaki, Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probab. Theory Relat. Fields, 106 (1996), 521-557.doi: 10.1007/s004400050074.

    [16]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, Berlin, 2001.doi: 10.1007/978-3-642-61798-0.

    [17]

    G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.

    [18]

    D. Jerison and C. E. Kenig, Boundary value problems on Lipschitz domains, MAA Stud. Math., 23 (1982), 1-68.

    [19]

    J. Jost, "Riemannian Geometry and Geometric Analysis," Fifth edition. Universitext. Springer-Verlag, Berlin, 2008.doi: 10.1007/978-3-642-21298-7.

    [20]

    O. A. Ladyzhenskaya and N. N. Ural鈥檛seva, "Linear and Quasilinear Elliptic Equations," Mathematics in Science and Engineering. 46. New York-London: Academic Press, 1968.

    [21]

    J. Maly and W. P. Ziemer, "Fine Regurality of Solutions of Elliptic Partial Differential Equations," Providence, Amer. Math. Soc., 1997.

    [22]

    C. B. Morrey Jr, Second order elliptic equations in several variables and Hölder continuity, Math. Z., 72 (1959), 146-164.doi: 10.1007/BF01162944.

    [23]

    J. Moser, A new proof of the de Giorgi's theorem concerning the regularity problem for elliptic differential equations, Commu. Pure Appl. Math., 13 (1960), 457-468.doi: 10.1002/cpa.3160130308.

    [24]

    M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl., 80 (1968), 1-122.doi: 10.1007/BF02413623.

    [25]

    R. Nittka, Regularity of solutions of linear second order elliptic and parabolic boundary value problems on Lipschitz domains, J. Differential Equations, 251 (2011), 860-880.doi: 10.1016/j.jde.2011.05.019.

    [26]

    El M. Ouhabaz, "Analysis of Heat Equations on Domains," Lond. Math. Soc. Monographs Series, 31. Princeton University Press, Princeton, NJ, 2005.

    [27]

    R. S. Phillips, The adjoint semi-group, Pacific J. Math., 5 (1955), 269-283.doi: 10.2140/pjm.1955.5.269.

    [28]

    G. Stampacchia, Problemi al contorno ellittici con dati discontinui dotati di soluzioni Hölderiane, Ann. Mat. Pura Appl., 51 (1960), 1-38.doi: 10.1007/BF02410941.

    [29]

    M. E. Taylor, "Partial Differential Equations. I. Basic Theory," Texts Appl. Math., vol. 23, Springer-Verlag, New York, 1996.doi: 10.1007/978-1-4684-9320-7.

    [30]

    J. L. Vázquez and E. Vitillaro, Heat equation with dynamical boundary conditions of reactive-diffusive type, J. Differential Equations, 250 (2011), 2143-2161.doi: 10.1016/j.jde.2010.12.012.

    [31]

    M. Warma, "The Laplacian with General Robin Boundary Conditions," Ph.D Dissertation, University of Ulm (Germany), 2002.

    [32]

    M. Warma, Wentzell-Robin boundary conditions on $C[0,1]$, Semigroup Forum, 66 (2003), 162-170.doi: 10.1007/s002330010124.

    [33]

    M. Warma, The Robin and Wentzell-Robin Laplacians on Lipschitz domains, Semigroup Forum, 73 (2006), 10-30.doi: 10.1007/s00233-006-0617-2.

    [34]

    M. Warma, Analyticity on $L^1$ of the heat semigroup with Wentzell boundary conditions, Arch. Math. (Basel), 94 (2010), 85-89.doi: 10.1007/s00013-009-0068-6.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(138) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return