• Previous Article
    On qualitative analysis for a two competing fish species model with a combined non-selective harvesting effort in the presence of toxicity
  • CPAA Home
  • This Issue
  • Next Article
    Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains
September  2013, 12(5): 1907-1926. doi: 10.3934/cpaa.2013.12.1907

Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations

1. 

School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130

Received  July 2011 Revised  November 2012 Published  January 2013

This paper deals with the zero dissipation limit problem for the Navier-Stokes equations when the viscosity and the heat-conductivity are of the same order. In the case when the Riemann solution of the Euler equations is piecewise constants with a contact discontinuity, we prove that there exist global solutions to the compressible Navier-Stokes equations, which converge to the in-viscid solution away from the contact discontinuity on any finite time interval, at some convergence rate as the dissipations tend towards zero. In addition, a faster convergence rate is obtained, so long as the strength of contact discontinuity $\delta=|\theta_+ -\theta_-|$ is taken suitably small.
Citation: Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907
References:
[1]

C. Duyn and L. Peletier, A class of similarity solution of the nonlinear diffusion equation,, Nonlinear Analysis T.M.A., 1 (1977), 223.  doi: 10.1016/0362-546X(77)90032-3.  Google Scholar

[2]

J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Ration. Mech. Anal.,, \textbf{121} (1992), 121 (1992), 235.  doi: 10.1007/BF00410614.  Google Scholar

[3]

D. Hoff and T. Liu, The inviscid limit for the Navier-Stokes equations of compressible, isentripic flow with shock data,, Indiana Univ. Math. J., 38 (1989), 861.   Google Scholar

[4]

F. Huang, M. Li and Y. Wang, Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations,, SIAM J. Math. Anal., 44 (2012), 1742.  doi: 10.1137/100814305.  Google Scholar

[5]

F. Huang, A. Matsumura and Z. Xin, Stability of contact Discontinuities for the 1-D compressible Navier-Stokes equations,, Arch. Ration. Mech. Anal., 179 (2005), 55.  doi: 10.1007/s00205-005-0380-7.  Google Scholar

[6]

F. Huang, Y. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact dis-continuity,, Kinetic and Related Models, 3 (2010), 685.  doi: 10.3934/krm.2010.3.685.  Google Scholar

[7]

S. Jiang, G. Ni and W. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids,, SIAM J. Math. Anal., 38 (2006), 368.  doi: 10.1137/050626478.  Google Scholar

[8]

S. Kawashima, Large-time behaviour of solutions to hyperbolic–parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169.  doi: 10.1017/S0308210500018308.  Google Scholar

[9]

S. Ma, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations,, J. Diff. Eqns., 248 (2010), 95.  doi: 10.1016/j.jde.2009.08.016.  Google Scholar

[10]

S. Ma, Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations,, J. Math. Anal. Appl., 387 (2012), 1033.  doi: 10.1016/j.jmaa.2011.10.010.  Google Scholar

[11]

P. L. Lions, "Mathematical Topics in Fluid Dynamics 2, Compressible Models,", Oxford Science Publication, (1998).   Google Scholar

[12]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", $2^{nd}, (1994).   Google Scholar

[13]

H. Wang, Viscous limits for piecewise smooth solutions of the p-system,, J. Math. Anal. Appl., 299 (2004), 411.  doi: 10.1016/j.jmaa.2004.03.064.  Google Scholar

[14]

Z. Xin and H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations,, J. Diff. Eqns., 249 (2010), 827.  doi: 10.1016/j.jde.2010.03.011.  Google Scholar

[15]

Z. Xin, On nonlinear stability of contact discontinuities,, In, (1994), 249.   Google Scholar

[16]

Z. Xin, Zero dissipation limit to rarefaction waves for the 1-dimensional Navier-Stokes equations of compressible isentropic gases,, Comm. Pure. Appl. Math., 46 (1993), 621.  doi: 0010-3640/93/050621-45.  Google Scholar

show all references

References:
[1]

C. Duyn and L. Peletier, A class of similarity solution of the nonlinear diffusion equation,, Nonlinear Analysis T.M.A., 1 (1977), 223.  doi: 10.1016/0362-546X(77)90032-3.  Google Scholar

[2]

J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Ration. Mech. Anal.,, \textbf{121} (1992), 121 (1992), 235.  doi: 10.1007/BF00410614.  Google Scholar

[3]

D. Hoff and T. Liu, The inviscid limit for the Navier-Stokes equations of compressible, isentripic flow with shock data,, Indiana Univ. Math. J., 38 (1989), 861.   Google Scholar

[4]

F. Huang, M. Li and Y. Wang, Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations,, SIAM J. Math. Anal., 44 (2012), 1742.  doi: 10.1137/100814305.  Google Scholar

[5]

F. Huang, A. Matsumura and Z. Xin, Stability of contact Discontinuities for the 1-D compressible Navier-Stokes equations,, Arch. Ration. Mech. Anal., 179 (2005), 55.  doi: 10.1007/s00205-005-0380-7.  Google Scholar

[6]

F. Huang, Y. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact dis-continuity,, Kinetic and Related Models, 3 (2010), 685.  doi: 10.3934/krm.2010.3.685.  Google Scholar

[7]

S. Jiang, G. Ni and W. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids,, SIAM J. Math. Anal., 38 (2006), 368.  doi: 10.1137/050626478.  Google Scholar

[8]

S. Kawashima, Large-time behaviour of solutions to hyperbolic–parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169.  doi: 10.1017/S0308210500018308.  Google Scholar

[9]

S. Ma, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations,, J. Diff. Eqns., 248 (2010), 95.  doi: 10.1016/j.jde.2009.08.016.  Google Scholar

[10]

S. Ma, Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations,, J. Math. Anal. Appl., 387 (2012), 1033.  doi: 10.1016/j.jmaa.2011.10.010.  Google Scholar

[11]

P. L. Lions, "Mathematical Topics in Fluid Dynamics 2, Compressible Models,", Oxford Science Publication, (1998).   Google Scholar

[12]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", $2^{nd}, (1994).   Google Scholar

[13]

H. Wang, Viscous limits for piecewise smooth solutions of the p-system,, J. Math. Anal. Appl., 299 (2004), 411.  doi: 10.1016/j.jmaa.2004.03.064.  Google Scholar

[14]

Z. Xin and H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations,, J. Diff. Eqns., 249 (2010), 827.  doi: 10.1016/j.jde.2010.03.011.  Google Scholar

[15]

Z. Xin, On nonlinear stability of contact discontinuities,, In, (1994), 249.   Google Scholar

[16]

Z. Xin, Zero dissipation limit to rarefaction waves for the 1-dimensional Navier-Stokes equations of compressible isentropic gases,, Comm. Pure. Appl. Math., 46 (1993), 621.  doi: 0010-3640/93/050621-45.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[6]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[9]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[13]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[14]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[15]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[16]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[17]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[18]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[19]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[20]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]