-
Previous Article
On qualitative analysis for a two competing fish species model with a combined non-selective harvesting effort in the presence of toxicity
- CPAA Home
- This Issue
-
Next Article
Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains
Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations
1. | School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130 |
References:
[1] |
C. Duyn and L. Peletier, A class of similarity solution of the nonlinear diffusion equation, Nonlinear Analysis T.M.A., 1 (1977), 223-233.
doi: 10.1016/0362-546X(77)90032-3. |
[2] |
J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Ration. Mech. Anal., 121 (1992), 235-265.
doi: 10.1007/BF00410614. |
[3] |
D. Hoff and T. Liu, The inviscid limit for the Navier-Stokes equations of compressible, isentripic flow with shock data, Indiana Univ. Math. J., 38 (1989), 861-915. |
[4] |
F. Huang, M. Li and Y. Wang, Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations, SIAM J. Math. Anal., 44(3) (2012), 1742-1759. arXiv:1011.1991v1.
doi: 10.1137/100814305. |
[5] |
F. Huang, A. Matsumura and Z. Xin, Stability of contact Discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2005), 55-77.
doi: 10.1007/s00205-005-0380-7. |
[6] |
F. Huang, Y. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact dis-continuity, Kinetic and Related Models, 3 (2010), 685-728. arXiv:1011.1990v1
doi: 10.3934/krm.2010.3.685. |
[7] |
S. Jiang, G. Ni and W. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids, SIAM J. Math. Anal., 38 (2006), 368-384.
doi: 10.1137/050626478. |
[8] |
S. Kawashima, Large-time behaviour of solutions to hyperbolic–parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169-194.
doi: 10.1017/S0308210500018308. |
[9] |
S. Ma, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations, J. Diff. Eqns., 248 (2010), 95-110.
doi: 10.1016/j.jde.2009.08.016. |
[10] |
S. Ma, Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations, J. Math. Anal. Appl., 387(2) (2012), 1033-1043.
doi: 10.1016/j.jmaa.2011.10.010. |
[11] |
P. L. Lions, "Mathematical Topics in Fluid Dynamics 2, Compressible Models," Oxford Science Publication, Oxford, 1998. |
[12] |
J. Smoller, "Shock Waves and Reaction-Diffusion Equations," $2^{nd},$ Springger-Verlag, New York, 1994. |
[13] |
H. Wang, Viscous limits for piecewise smooth solutions of the p-system, J. Math. Anal. Appl., 299 (2004), 411-432.
doi: 10.1016/j.jmaa.2004.03.064. |
[14] |
Z. Xin and H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations, J. Diff. Eqns., 249 (2010), 827-871.
doi: 10.1016/j.jde.2010.03.011. |
[15] |
Z. Xin, On nonlinear stability of contact discontinuities, In "Hyperbolic Problems: Theory; Numerics, Applicaions" (Stony Brook, NY, 1994), 249-257. Word Sci. Publishing, River Edge, NJ, 1996. |
[16] |
Z. Xin, Zero dissipation limit to rarefaction waves for the 1-dimensional Navier-Stokes equations of compressible isentropic gases, Comm. Pure. Appl. Math., 46 (1993), 621-665.
doi: 0010-3640/93/050621-45. |
show all references
References:
[1] |
C. Duyn and L. Peletier, A class of similarity solution of the nonlinear diffusion equation, Nonlinear Analysis T.M.A., 1 (1977), 223-233.
doi: 10.1016/0362-546X(77)90032-3. |
[2] |
J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Ration. Mech. Anal., 121 (1992), 235-265.
doi: 10.1007/BF00410614. |
[3] |
D. Hoff and T. Liu, The inviscid limit for the Navier-Stokes equations of compressible, isentripic flow with shock data, Indiana Univ. Math. J., 38 (1989), 861-915. |
[4] |
F. Huang, M. Li and Y. Wang, Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations, SIAM J. Math. Anal., 44(3) (2012), 1742-1759. arXiv:1011.1991v1.
doi: 10.1137/100814305. |
[5] |
F. Huang, A. Matsumura and Z. Xin, Stability of contact Discontinuities for the 1-D compressible Navier-Stokes equations, Arch. Ration. Mech. Anal., 179 (2005), 55-77.
doi: 10.1007/s00205-005-0380-7. |
[6] |
F. Huang, Y. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact dis-continuity, Kinetic and Related Models, 3 (2010), 685-728. arXiv:1011.1990v1
doi: 10.3934/krm.2010.3.685. |
[7] |
S. Jiang, G. Ni and W. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids, SIAM J. Math. Anal., 38 (2006), 368-384.
doi: 10.1137/050626478. |
[8] |
S. Kawashima, Large-time behaviour of solutions to hyperbolic–parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169-194.
doi: 10.1017/S0308210500018308. |
[9] |
S. Ma, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations, J. Diff. Eqns., 248 (2010), 95-110.
doi: 10.1016/j.jde.2009.08.016. |
[10] |
S. Ma, Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations, J. Math. Anal. Appl., 387(2) (2012), 1033-1043.
doi: 10.1016/j.jmaa.2011.10.010. |
[11] |
P. L. Lions, "Mathematical Topics in Fluid Dynamics 2, Compressible Models," Oxford Science Publication, Oxford, 1998. |
[12] |
J. Smoller, "Shock Waves and Reaction-Diffusion Equations," $2^{nd},$ Springger-Verlag, New York, 1994. |
[13] |
H. Wang, Viscous limits for piecewise smooth solutions of the p-system, J. Math. Anal. Appl., 299 (2004), 411-432.
doi: 10.1016/j.jmaa.2004.03.064. |
[14] |
Z. Xin and H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations, J. Diff. Eqns., 249 (2010), 827-871.
doi: 10.1016/j.jde.2010.03.011. |
[15] |
Z. Xin, On nonlinear stability of contact discontinuities, In "Hyperbolic Problems: Theory; Numerics, Applicaions" (Stony Brook, NY, 1994), 249-257. Word Sci. Publishing, River Edge, NJ, 1996. |
[16] |
Z. Xin, Zero dissipation limit to rarefaction waves for the 1-dimensional Navier-Stokes equations of compressible isentropic gases, Comm. Pure. Appl. Math., 46 (1993), 621-665.
doi: 0010-3640/93/050621-45. |
[1] |
Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107 |
[2] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[3] |
Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673 |
[4] |
Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631 |
[5] |
Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic and Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685 |
[6] |
Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173 |
[7] |
Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2715-2719. doi: 10.3934/cpaa.2013.12.2715 |
[8] |
Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829 |
[9] |
Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557 |
[10] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure and Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[11] |
Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595 |
[12] |
Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 |
[13] |
Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085 |
[14] |
Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719 |
[15] |
Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic and Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006 |
[16] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic and Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[17] |
Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D Navier-Stokes-Voigt equations and their Navier-Stokes limit. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 375-403. doi: 10.3934/dcds.2010.28.375 |
[18] |
Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101 |
[19] |
Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57 |
[20] |
Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic and Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]