• Previous Article
    On qualitative analysis for a two competing fish species model with a combined non-selective harvesting effort in the presence of toxicity
  • CPAA Home
  • This Issue
  • Next Article
    Parabolic and elliptic problems with general Wentzell boundary condition on Lipschitz domains
September  2013, 12(5): 1907-1926. doi: 10.3934/cpaa.2013.12.1907

Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations

1. 

School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130

Received  July 2011 Revised  November 2012 Published  January 2013

This paper deals with the zero dissipation limit problem for the Navier-Stokes equations when the viscosity and the heat-conductivity are of the same order. In the case when the Riemann solution of the Euler equations is piecewise constants with a contact discontinuity, we prove that there exist global solutions to the compressible Navier-Stokes equations, which converge to the in-viscid solution away from the contact discontinuity on any finite time interval, at some convergence rate as the dissipations tend towards zero. In addition, a faster convergence rate is obtained, so long as the strength of contact discontinuity $\delta=|\theta_+ -\theta_-|$ is taken suitably small.
Citation: Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907
References:
[1]

C. Duyn and L. Peletier, A class of similarity solution of the nonlinear diffusion equation,, Nonlinear Analysis T.M.A., 1 (1977), 223. doi: 10.1016/0362-546X(77)90032-3. Google Scholar

[2]

J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Ration. Mech. Anal.,, \textbf{121} (1992), 121 (1992), 235. doi: 10.1007/BF00410614. Google Scholar

[3]

D. Hoff and T. Liu, The inviscid limit for the Navier-Stokes equations of compressible, isentripic flow with shock data,, Indiana Univ. Math. J., 38 (1989), 861. Google Scholar

[4]

F. Huang, M. Li and Y. Wang, Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations,, SIAM J. Math. Anal., 44 (2012), 1742. doi: 10.1137/100814305. Google Scholar

[5]

F. Huang, A. Matsumura and Z. Xin, Stability of contact Discontinuities for the 1-D compressible Navier-Stokes equations,, Arch. Ration. Mech. Anal., 179 (2005), 55. doi: 10.1007/s00205-005-0380-7. Google Scholar

[6]

F. Huang, Y. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact dis-continuity,, Kinetic and Related Models, 3 (2010), 685. doi: 10.3934/krm.2010.3.685. Google Scholar

[7]

S. Jiang, G. Ni and W. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids,, SIAM J. Math. Anal., 38 (2006), 368. doi: 10.1137/050626478. Google Scholar

[8]

S. Kawashima, Large-time behaviour of solutions to hyperbolic–parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169. doi: 10.1017/S0308210500018308. Google Scholar

[9]

S. Ma, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations,, J. Diff. Eqns., 248 (2010), 95. doi: 10.1016/j.jde.2009.08.016. Google Scholar

[10]

S. Ma, Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations,, J. Math. Anal. Appl., 387 (2012), 1033. doi: 10.1016/j.jmaa.2011.10.010. Google Scholar

[11]

P. L. Lions, "Mathematical Topics in Fluid Dynamics 2, Compressible Models,", Oxford Science Publication, (1998). Google Scholar

[12]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", $2^{nd}, (1994). Google Scholar

[13]

H. Wang, Viscous limits for piecewise smooth solutions of the p-system,, J. Math. Anal. Appl., 299 (2004), 411. doi: 10.1016/j.jmaa.2004.03.064. Google Scholar

[14]

Z. Xin and H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations,, J. Diff. Eqns., 249 (2010), 827. doi: 10.1016/j.jde.2010.03.011. Google Scholar

[15]

Z. Xin, On nonlinear stability of contact discontinuities,, In, (1994), 249. Google Scholar

[16]

Z. Xin, Zero dissipation limit to rarefaction waves for the 1-dimensional Navier-Stokes equations of compressible isentropic gases,, Comm. Pure. Appl. Math., 46 (1993), 621. doi: 0010-3640/93/050621-45. Google Scholar

show all references

References:
[1]

C. Duyn and L. Peletier, A class of similarity solution of the nonlinear diffusion equation,, Nonlinear Analysis T.M.A., 1 (1977), 223. doi: 10.1016/0362-546X(77)90032-3. Google Scholar

[2]

J. Goodman and Z. Xin, Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Ration. Mech. Anal.,, \textbf{121} (1992), 121 (1992), 235. doi: 10.1007/BF00410614. Google Scholar

[3]

D. Hoff and T. Liu, The inviscid limit for the Navier-Stokes equations of compressible, isentripic flow with shock data,, Indiana Univ. Math. J., 38 (1989), 861. Google Scholar

[4]

F. Huang, M. Li and Y. Wang, Zero dissipation limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations,, SIAM J. Math. Anal., 44 (2012), 1742. doi: 10.1137/100814305. Google Scholar

[5]

F. Huang, A. Matsumura and Z. Xin, Stability of contact Discontinuities for the 1-D compressible Navier-Stokes equations,, Arch. Ration. Mech. Anal., 179 (2005), 55. doi: 10.1007/s00205-005-0380-7. Google Scholar

[6]

F. Huang, Y. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: I. Superposition of rarefaction waves and contact dis-continuity,, Kinetic and Related Models, 3 (2010), 685. doi: 10.3934/krm.2010.3.685. Google Scholar

[7]

S. Jiang, G. Ni and W. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids,, SIAM J. Math. Anal., 38 (2006), 368. doi: 10.1137/050626478. Google Scholar

[8]

S. Kawashima, Large-time behaviour of solutions to hyperbolic–parabolic systems of conservation laws and applications,, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169. doi: 10.1017/S0308210500018308. Google Scholar

[9]

S. Ma, Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations,, J. Diff. Eqns., 248 (2010), 95. doi: 10.1016/j.jde.2009.08.016. Google Scholar

[10]

S. Ma, Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations,, J. Math. Anal. Appl., 387 (2012), 1033. doi: 10.1016/j.jmaa.2011.10.010. Google Scholar

[11]

P. L. Lions, "Mathematical Topics in Fluid Dynamics 2, Compressible Models,", Oxford Science Publication, (1998). Google Scholar

[12]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", $2^{nd}, (1994). Google Scholar

[13]

H. Wang, Viscous limits for piecewise smooth solutions of the p-system,, J. Math. Anal. Appl., 299 (2004), 411. doi: 10.1016/j.jmaa.2004.03.064. Google Scholar

[14]

Z. Xin and H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations,, J. Diff. Eqns., 249 (2010), 827. doi: 10.1016/j.jde.2010.03.011. Google Scholar

[15]

Z. Xin, On nonlinear stability of contact discontinuities,, In, (1994), 249. Google Scholar

[16]

Z. Xin, Zero dissipation limit to rarefaction waves for the 1-dimensional Navier-Stokes equations of compressible isentropic gases,, Comm. Pure. Appl. Math., 46 (1993), 621. doi: 0010-3640/93/050621-45. Google Scholar

[1]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[2]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[3]

Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673

[4]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[5]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic & Related Models, 2010, 3 (4) : 685-728. doi: 10.3934/krm.2010.3.685

[6]

Jian Su, Yinnian He. The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3421-3438. doi: 10.3934/dcdsb.2017173

[7]

Yi Zhou, Zhen Lei. Logarithmically improved criteria for Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2715-2719. doi: 10.3934/cpaa.2013.12.2715

[8]

Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829

[9]

Carlo Morosi, Livio Pizzocchero. On the constants in a Kato inequality for the Euler and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 557-586. doi: 10.3934/cpaa.2012.11.557

[10]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[11]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[12]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[13]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[14]

Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719

[15]

Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006

[16]

Fabio Ramos, Edriss S. Titi. Invariant measures for the $3$D Navier-Stokes-Voigt equations and their Navier-Stokes limit. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 375-403. doi: 10.3934/dcds.2010.28.375

[17]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[18]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[19]

Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic & Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

[20]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]