September  2013, 12(5): 1959-1983. doi: 10.3934/cpaa.2013.12.1959

Tug-of-war games and the infinity Laplacian with spatial dependence

1. 

Instituto de Matemática Aplicada del Litoral (IMAL), CONICET-UNL, Departamento de Matemática, Facultad de Ingeniería Química, UNL, Güemes 3450, S3000GLN Santa Fe, Argentina

2. 

Dpto. de Matemáticas, FCEyN, Universidad de Buenos Aires, 1428 – Buenos Aires

Received  January 2012 Revised  October 2012 Published  January 2013

In this paper we look for PDEs that arise as limits of values of tug-of-war games when the possible movements of the game are taken in a family of sets that are not necessarily Euclidean balls. In this way we find existence of viscosity solutions to the Dirichlet problem for an equation of the form $- \langle D^2 v\cdot J_x(D v) ; J_x(Dv)\rangle (x) =0$, that is, an infinity Laplacian with spatial dependence. Here $J_x (Dv(x))$ is a vector that depends on the spatial location and the gradient of the solution.
Citation: Ivana Gómez, Julio D. Rossi. Tug-of-war games and the infinity Laplacian with spatial dependence. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1959-1983. doi: 10.3934/cpaa.2013.12.1959
References:
[1]

Tonći Antunović, Yuval Peres, Scott Sheffield and Stephanie Somersille, Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition,, Comm. Partial Differential Equations, 37 (2012), 1839.  doi: 10.1080/03605302.2011.642450.  Google Scholar

[2]

Scott N. Armstrong and Charles K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games,, Trans. Amer. Math. Soc., 364 (2012), 595.  doi: 10.1090/S0002-9947-2011-05289-X.  Google Scholar

[3]

Scott N. Armstrong and Charles K. Smart, An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions,, Calc. Var. Partial Differential Equations, 37 (2010), 381.  doi: 10.1007/s00526-009-0267-9.  Google Scholar

[4]

Scott N. Armstrong, Charles K. Smart and Stephanie J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, Proc. Amer. Math. Soc., 139 (2011), 1763.  doi: 10.1090/S0002-9939-2010-10666-4.  Google Scholar

[5]

Gunnar Aronsson, Michael G. Crandall and Petri Juutinen, A tour of the theory of absolutely minimizing functions,, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[6]

G. Barles and Jérôme Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term,, Comm. Partial Differential Equations, 26 (2001), 2323.  doi: 10.1081/PDE-100107824.  Google Scholar

[7]

E. N. Barron, L. C. Evans and R. Jensen, The infinity Laplacian, Aronsson's equation and their generalizations,, Trans. Amer. Math. Soc., 360 (2008), 77.  doi: 10.1090/S0002-9947-07-04338-3.  Google Scholar

[8]

Marino Belloni and Bernd Kawohl, The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p\to\infty$,, ESAIM Control Optim. Calc. Var., 10 (2004), 28.  doi: 10.1051/cocv:2003035.  Google Scholar

[9]

M. Belloni, B. Kawohl and P. Juutinen, The $p$-Laplace eigenvalue problem as $p\to\infty$ in a Finsler metric,, J. Eur. Math. Soc. (JEMS), 8 (2006), 123.  doi: 10.4171/JEMS/40.  Google Scholar

[10]

T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems. , Rend. Sem. Mat. Univ. Politec. Torino, (1991), 15.   Google Scholar

[11]

Thierry Champion and Luigi De Pascale, Principles of comparison with distance functions for absolute minimizers,, J. Convex. Anal., 14 (2007), 515.   Google Scholar

[12]

Fernando Charro, Jesus García Azorero and Julio D. Rossi, A mixed problem for the infinity Laplacian via tug-of-war games,, Calc. Var. Partial Differential Equations, 34 (2009), 307.  doi: 10.1007/s00526-008-0185-2.  Google Scholar

[13]

Fernando Charro and Ireneo Peral, Limit branch of solutions as $p\to\infty$ for a family of sub-diffusive problems related to the $p$-Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1965.  doi: 10.1080/03605300701454792.  Google Scholar

[14]

Michael G. Crandall, Gunnar Gunnarsson and Peiyong Wang, Uniqueness of $\infty$-harmonic functions and the eikonal equation,, Comm. Partial Differential Equations, 32 (2007), 1587.  doi: 10.1080/03605300601088807.  Google Scholar

[15]

Michael G. Crandall, Hitoshi Ishii and Pierre-Louis Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[16]

Lawrence C. Evans and Ovidiu Savin, $C^{1,\alpha}$ regularity for infinity harmonic functions in two dimensions,, Calc. Var. Partial Differential Equations, 32 (2008), 325.  doi: 10.1007/s00526-007-0143-4.  Google Scholar

[17]

Lawrence C. Evans and Charles K. Smart, Everywhere differentiability of infinity harmonic functions,, Calc. Var. Partial Differential Equations, 42 (2011), 289.  doi: 10.1007/s00526-010-0388-1.  Google Scholar

[18]

E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE $\Delta_\infty(u)=0$, , NoDEA Nonlinear Differential Equations Appl., 14 (2007), 29.  doi: 10.1007/s00030-006-4030-z.  Google Scholar

[19]

E. Le Gruyer and J. C. Archer, Harmonious extensions,, SIAM J. Math. Anal., 29 (1998), 279.  doi: 10.1137/S0036141095294067.  Google Scholar

[20]

Toshihiro Ishibashi and Shigeaki Koike, On fully nonlinear PDEs derived from variational problems of $L^p$ norms,, SIAM J. Math. Anal., 33 (2001), 545.  doi: 10.1137/S0036141000380000.  Google Scholar

[21]

Robert Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient,, Arch. Rational Mech. Anal., 123 (1993), 51.  doi: 10.1007/BF00386368.  Google Scholar

[22]

Petri Juutinen and Peter Lindqvist, On the higher eigenvalues for the $\infty$-eigenvalue problem,, Calc. Var. Partial Differential Equations, 23 (2005), 169.  doi: 10.1007/s00526-004-0295-4.  Google Scholar

[23]

Petri Juutinen, Peter Lindqvist and Juan J. Manfredi, The $\infty$-eigenvalue problem, , Arch. Rational Mech. Anal., 148 (1999), 89.  doi: 10.1007/s002050050157.  Google Scholar

[24]

Robert V. Kohn and Sylvia Serfaty, A deterministic-control-based approach to motion by curvature,, Comm. Pure Appl. Math., 59 (2006), 344.  doi: 10.1002/cpa.20101.  Google Scholar

[25]

Ashok P. Maitra and William D. Sudderth, "Discrete Gambling and Stochastic Games,", Applications of Mathematics (New York) 32, (1996).   Google Scholar

[26]

Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, Dynamic programming principle for tug-of-war games with noise,, ESAIM Control Optim. Calc. Var., 18 (2012), 81.  doi: 10.1051/cocv/2010046.  Google Scholar

[27]

Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, On the definition and properties of $p$-harmonious functions,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 215.  doi: 10.2422/2036-2145.201005_003.  Google Scholar

[28]

Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, An asymptotic mean value characterization for $p$-harmonic functions,, Proc. Amer. Math. Soc., 138 (2010), 881.  doi: 10.1090/S0002-9939-09-10183-1.  Google Scholar

[29]

Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, SIAM J. Math. Anal., 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[30]

Adam M. Oberman, A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions,, Math. Comp., 74 (2005), 1217.  doi: 10.1090/S0025-5718-04-01688-6.  Google Scholar

[31]

Yuval Peres, Gábor Pete and Stephanie Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones,, Calc. Var. Partial Differential Equations, 38 (2010), 541.  doi: 10.1007/s00526-009-0298-2.  Google Scholar

[32]

Yuval Peres, Oded Schramm, Scott Sheffield and David B. Wilson, Tug-of-war and the infinity Laplacian,, J. Amer. Math. Soc., 22 (2009), 167.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[33]

Yuval Peres and Scott Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian,, Duke Math. J., 145 (2008), 91.  doi: 10.1215/00127094-2008-048.  Google Scholar

[34]

Julio D. Rossi and Mariel Saez, Optimal regularity for the pseudo infinity Laplacian,, ESAIM Control Optim. Calc. Var., 13 (2007), 294.  doi: 10.1051/cocv:2007018.  Google Scholar

[35]

Ovidiu Savin, $C^1$ regularity for infinity harmonic functions in two dimensions,, Arch. Ration. Mech. Anal., 176 (2005), 351.  doi: 10.1007/s00205-005-0355-8.  Google Scholar

[36]

, "Sthocastic Games & Applications," Proceedings of the Nato Advanced Study Institute held in Stony Brook, NY, July 7-17, 1999, Abraham Neyman and Sylvain Sorin (eds.),, NATO Science Series C: Mathematical and Physical Sciences, (2003).   Google Scholar

show all references

References:
[1]

Tonći Antunović, Yuval Peres, Scott Sheffield and Stephanie Somersille, Tug-of-war and infinity Laplace equation with vanishing Neumann boundary condition,, Comm. Partial Differential Equations, 37 (2012), 1839.  doi: 10.1080/03605302.2011.642450.  Google Scholar

[2]

Scott N. Armstrong and Charles K. Smart, A finite difference approach to the infinity Laplace equation and tug-of-war games,, Trans. Amer. Math. Soc., 364 (2012), 595.  doi: 10.1090/S0002-9947-2011-05289-X.  Google Scholar

[3]

Scott N. Armstrong and Charles K. Smart, An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions,, Calc. Var. Partial Differential Equations, 37 (2010), 381.  doi: 10.1007/s00526-009-0267-9.  Google Scholar

[4]

Scott N. Armstrong, Charles K. Smart and Stephanie J. Somersille, An infinity Laplace equation with gradient term and mixed boundary conditions,, Proc. Amer. Math. Soc., 139 (2011), 1763.  doi: 10.1090/S0002-9939-2010-10666-4.  Google Scholar

[5]

Gunnar Aronsson, Michael G. Crandall and Petri Juutinen, A tour of the theory of absolutely minimizing functions,, Bull. Amer. Math. Soc. (N.S.), 41 (2004), 439.  doi: 10.1090/S0273-0979-04-01035-3.  Google Scholar

[6]

G. Barles and Jérôme Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term,, Comm. Partial Differential Equations, 26 (2001), 2323.  doi: 10.1081/PDE-100107824.  Google Scholar

[7]

E. N. Barron, L. C. Evans and R. Jensen, The infinity Laplacian, Aronsson's equation and their generalizations,, Trans. Amer. Math. Soc., 360 (2008), 77.  doi: 10.1090/S0002-9947-07-04338-3.  Google Scholar

[8]

Marino Belloni and Bernd Kawohl, The pseudo-$p$-Laplace eigenvalue problem and viscosity solutions as $p\to\infty$,, ESAIM Control Optim. Calc. Var., 10 (2004), 28.  doi: 10.1051/cocv:2003035.  Google Scholar

[9]

M. Belloni, B. Kawohl and P. Juutinen, The $p$-Laplace eigenvalue problem as $p\to\infty$ in a Finsler metric,, J. Eur. Math. Soc. (JEMS), 8 (2006), 123.  doi: 10.4171/JEMS/40.  Google Scholar

[10]

T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems. , Rend. Sem. Mat. Univ. Politec. Torino, (1991), 15.   Google Scholar

[11]

Thierry Champion and Luigi De Pascale, Principles of comparison with distance functions for absolute minimizers,, J. Convex. Anal., 14 (2007), 515.   Google Scholar

[12]

Fernando Charro, Jesus García Azorero and Julio D. Rossi, A mixed problem for the infinity Laplacian via tug-of-war games,, Calc. Var. Partial Differential Equations, 34 (2009), 307.  doi: 10.1007/s00526-008-0185-2.  Google Scholar

[13]

Fernando Charro and Ireneo Peral, Limit branch of solutions as $p\to\infty$ for a family of sub-diffusive problems related to the $p$-Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1965.  doi: 10.1080/03605300701454792.  Google Scholar

[14]

Michael G. Crandall, Gunnar Gunnarsson and Peiyong Wang, Uniqueness of $\infty$-harmonic functions and the eikonal equation,, Comm. Partial Differential Equations, 32 (2007), 1587.  doi: 10.1080/03605300601088807.  Google Scholar

[15]

Michael G. Crandall, Hitoshi Ishii and Pierre-Louis Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[16]

Lawrence C. Evans and Ovidiu Savin, $C^{1,\alpha}$ regularity for infinity harmonic functions in two dimensions,, Calc. Var. Partial Differential Equations, 32 (2008), 325.  doi: 10.1007/s00526-007-0143-4.  Google Scholar

[17]

Lawrence C. Evans and Charles K. Smart, Everywhere differentiability of infinity harmonic functions,, Calc. Var. Partial Differential Equations, 42 (2011), 289.  doi: 10.1007/s00526-010-0388-1.  Google Scholar

[18]

E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE $\Delta_\infty(u)=0$, , NoDEA Nonlinear Differential Equations Appl., 14 (2007), 29.  doi: 10.1007/s00030-006-4030-z.  Google Scholar

[19]

E. Le Gruyer and J. C. Archer, Harmonious extensions,, SIAM J. Math. Anal., 29 (1998), 279.  doi: 10.1137/S0036141095294067.  Google Scholar

[20]

Toshihiro Ishibashi and Shigeaki Koike, On fully nonlinear PDEs derived from variational problems of $L^p$ norms,, SIAM J. Math. Anal., 33 (2001), 545.  doi: 10.1137/S0036141000380000.  Google Scholar

[21]

Robert Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient,, Arch. Rational Mech. Anal., 123 (1993), 51.  doi: 10.1007/BF00386368.  Google Scholar

[22]

Petri Juutinen and Peter Lindqvist, On the higher eigenvalues for the $\infty$-eigenvalue problem,, Calc. Var. Partial Differential Equations, 23 (2005), 169.  doi: 10.1007/s00526-004-0295-4.  Google Scholar

[23]

Petri Juutinen, Peter Lindqvist and Juan J. Manfredi, The $\infty$-eigenvalue problem, , Arch. Rational Mech. Anal., 148 (1999), 89.  doi: 10.1007/s002050050157.  Google Scholar

[24]

Robert V. Kohn and Sylvia Serfaty, A deterministic-control-based approach to motion by curvature,, Comm. Pure Appl. Math., 59 (2006), 344.  doi: 10.1002/cpa.20101.  Google Scholar

[25]

Ashok P. Maitra and William D. Sudderth, "Discrete Gambling and Stochastic Games,", Applications of Mathematics (New York) 32, (1996).   Google Scholar

[26]

Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, Dynamic programming principle for tug-of-war games with noise,, ESAIM Control Optim. Calc. Var., 18 (2012), 81.  doi: 10.1051/cocv/2010046.  Google Scholar

[27]

Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, On the definition and properties of $p$-harmonious functions,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 11 (2012), 215.  doi: 10.2422/2036-2145.201005_003.  Google Scholar

[28]

Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, An asymptotic mean value characterization for $p$-harmonic functions,, Proc. Amer. Math. Soc., 138 (2010), 881.  doi: 10.1090/S0002-9939-09-10183-1.  Google Scholar

[29]

Juan J. Manfredi, Mikko Parviainen and Julio D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games,, SIAM J. Math. Anal., 42 (2010), 2058.  doi: 10.1137/100782073.  Google Scholar

[30]

Adam M. Oberman, A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions,, Math. Comp., 74 (2005), 1217.  doi: 10.1090/S0025-5718-04-01688-6.  Google Scholar

[31]

Yuval Peres, Gábor Pete and Stephanie Somersille, Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones,, Calc. Var. Partial Differential Equations, 38 (2010), 541.  doi: 10.1007/s00526-009-0298-2.  Google Scholar

[32]

Yuval Peres, Oded Schramm, Scott Sheffield and David B. Wilson, Tug-of-war and the infinity Laplacian,, J. Amer. Math. Soc., 22 (2009), 167.  doi: 10.1090/S0894-0347-08-00606-1.  Google Scholar

[33]

Yuval Peres and Scott Sheffield, Tug-of-war with noise: a game-theoretic view of the $p$-Laplacian,, Duke Math. J., 145 (2008), 91.  doi: 10.1215/00127094-2008-048.  Google Scholar

[34]

Julio D. Rossi and Mariel Saez, Optimal regularity for the pseudo infinity Laplacian,, ESAIM Control Optim. Calc. Var., 13 (2007), 294.  doi: 10.1051/cocv:2007018.  Google Scholar

[35]

Ovidiu Savin, $C^1$ regularity for infinity harmonic functions in two dimensions,, Arch. Ration. Mech. Anal., 176 (2005), 351.  doi: 10.1007/s00205-005-0355-8.  Google Scholar

[36]

, "Sthocastic Games & Applications," Proceedings of the Nato Advanced Study Institute held in Stony Brook, NY, July 7-17, 1999, Abraham Neyman and Sylvain Sorin (eds.),, NATO Science Series C: Mathematical and Physical Sciences, (2003).   Google Scholar

[1]

Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021007

[2]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[3]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[4]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[5]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[6]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[7]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[8]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[9]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[10]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004

[11]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[12]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[13]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[14]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[17]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[18]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[19]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[20]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]