September  2013, 12(5): 2001-2029. doi: 10.3934/cpaa.2013.12.2001

Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions

1. 

Nha Trang Educational College, 01 Nguyen Chanh Str., Nha Trang City, Vietnam

2. 

Department of Mathematics and Computer Science, University of Natural Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist.5, Ho Chi Minh City, Vietnam

Received  January 2012 Revised  November 2012 Published  January 2013

The paper is devoted to the study of a nonlinear wave equation with nonlocal boundary conditions of integral forms. First, we establish two local existence theorems by using Faedo-Galerkin method. Next, we give a sufficient condition to guarantee the global existence and exponential decay of weak solutions.
Citation: Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001
References:
[1]

R. G. C. Almeida and M. L. Santos, Lack of exponential decay of a coupled system of wave equations with memory,, NA, 40 (2001), 1159.  doi: 10.1016/j.nonrwa.2010.08.025.  Google Scholar

[2]

M. Bergounioux, N. T. Long and A. P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar,, Nonlinear Anal., 43 (2001), 547.  doi: 10.1016/S0362-546X(99)00218-7.  Google Scholar

[3]

S. A. Beilin, On a Mixed nonlocal problem for a wave equation,, Electronic J. Differential Equations, 2006 (2006), 1.  doi: http://ejde.math.txstate.edu/Volumes/2006/103/beilin.pdf.  Google Scholar

[4]

A. Benaissa and S. A. Messaoudi, Exponential decay of solutions of a nonlinearly damped wave equation,, Nonlinear Differ. Equ. Appl., 12 (2005), 391.  doi: 10.1007/s00030-005-0008-5.  Google Scholar

[5]

H. R. Clark, Global classical solutions to the Cauchy problem for a nonlinear wave equation,, Internat. J. Math. and Math. Sci., 21 (1998), 533.  doi: 10.1155/S016117129800074X.  Google Scholar

[6]

Lakshmikantham V and Leela S, "Differential and Integral Inequalities," Vol.1,, Academic Press, (1969).  doi: 10.1016/S0076-5392(08)62290-0.  Google Scholar

[7]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires,, Dunod, (1969).   Google Scholar

[8]

N. T. Long and A. P. N. Dinh, On the quasilinear wave equation: $u_{t t}-\Delta u+f(u, u_t)=0$ associated with a mixed nonhomogeneous condition,, Nonlinear Anal., 19 (1992), 613.  doi: 10.1016/0362-546X(92)90097-X.  Google Scholar

[9]

N. T. Long and T. N. Diem, On the nonlinear wave equation $u_{t t}-u_{x x}=f(x,t,u,u_x,u_t)$ associated with the mixed homogeneous conditions,, Nonlinear Anal., 29 (1997), 1217.  doi: 10.1016/S0362-546X(97)87360-9.  Google Scholar

[10]

N. T. Long, A. P. N. Dinh and T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar,, J. Boundary Value Prob., 2005 (2005), 337.  doi: 10.1155/BVP.2005.337.  Google Scholar

[11]

N. T. Long and L. X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition,, NA, 67 (2007), 842.  doi: 10.1016/j.na.2006.06.044.  Google Scholar

[12]

S. A. Messaoudi, Decay of the solution energy for a nonlinearly damped wave equation,, Arab. J. for Science and Engineering, 26 (2001), 63.   Google Scholar

[13]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part one,, J. Comput. Anal. Appl., 4 (2002), 91.  doi: 10.1023/A:1012934900316.  Google Scholar

[14]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part two,, J. Comput. Anal. Appl., 4 (2002), 211.  doi: 10.1023/A:1013151525487.  Google Scholar

[15]

G. P. Menzala, On global classical solutions of a nonlinear wave equation,, Appl. Anal., 10 (1980), 179.  doi: 10.1080/00036818008839300.  Google Scholar

[16]

S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation,, Math. Nachr., 260 (2003), 58.  doi: 10.1002/mana.200310104.  Google Scholar

[17]

M. Nakao, Decay of solutions of some nonlinear evolution equations,, J. Math. Anal. Appl., 60 (1977), 542.  doi: 10.1016/0022-247X(77)90040-3.  Google Scholar

[18]

Nakao and Mitsuhiro, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations,, Math. Z., 206 (1991), 265.  doi: 10.1007\%2FBF02571342.  Google Scholar

[19]

M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation,, Funkcial. Ekvac., 38 (1995), 417.  doi: http://www.math.kobe-u.ac.jp/\symbol{126}fe/xml/mr1374429.xml.  Google Scholar

[20]

L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution,, NA, 70 (2009), 3943.  doi: 10.1016/j.na.2008.08.004.  Google Scholar

[21]

K. Ono, On the global existence and decay of solutions for semilinear telegraph equations,, Int. J. Applied Math., 2 (2000), 1121.  doi: 10.1002/(SICI)1099-1476(200004)23:6.  Google Scholar

[22]

J. E. Munoz-Rivera and D. Andrade, Exponential decay of non-linear wave equation with a viscoelastic boundary condition,, Math. Methods Appl. Sci., 23 (2000), 41.  doi: 10.1002/(SICI)1099-1476(20000110)23:1.  Google Scholar

[23]

M. L. Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary,, Electronic J. Differential Equations, 73 (2001), 1.  doi: http://www.emis.de/journals/EJDE/Volumes/2001/73/santos.pdf.  Google Scholar

[24]

M. L. Santos, Decay rates for solutions of a system of wave equations with memory,, Electronic J. Differential Equations, 2002 (2002), 1.  doi: 10.1155/S1085337502204133.  Google Scholar

[25]

M. L. Santos, J. Ferreira, D. C. Pereira and C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary,, Nonlinear Anal., 54 (2003), 959.  doi: 10.1016/S0362-546X(03)00121-4.  Google Scholar

[26]

L. X. Truong, L. T. P. Ngoc, A. P. N. Dinh and N. T. Long, The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions,, NA, 11 (2010), 1289.  doi: 10.1016/j.nonrwa.2009.02.018.  Google Scholar

show all references

References:
[1]

R. G. C. Almeida and M. L. Santos, Lack of exponential decay of a coupled system of wave equations with memory,, NA, 40 (2001), 1159.  doi: 10.1016/j.nonrwa.2010.08.025.  Google Scholar

[2]

M. Bergounioux, N. T. Long and A. P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar,, Nonlinear Anal., 43 (2001), 547.  doi: 10.1016/S0362-546X(99)00218-7.  Google Scholar

[3]

S. A. Beilin, On a Mixed nonlocal problem for a wave equation,, Electronic J. Differential Equations, 2006 (2006), 1.  doi: http://ejde.math.txstate.edu/Volumes/2006/103/beilin.pdf.  Google Scholar

[4]

A. Benaissa and S. A. Messaoudi, Exponential decay of solutions of a nonlinearly damped wave equation,, Nonlinear Differ. Equ. Appl., 12 (2005), 391.  doi: 10.1007/s00030-005-0008-5.  Google Scholar

[5]

H. R. Clark, Global classical solutions to the Cauchy problem for a nonlinear wave equation,, Internat. J. Math. and Math. Sci., 21 (1998), 533.  doi: 10.1155/S016117129800074X.  Google Scholar

[6]

Lakshmikantham V and Leela S, "Differential and Integral Inequalities," Vol.1,, Academic Press, (1969).  doi: 10.1016/S0076-5392(08)62290-0.  Google Scholar

[7]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires,, Dunod, (1969).   Google Scholar

[8]

N. T. Long and A. P. N. Dinh, On the quasilinear wave equation: $u_{t t}-\Delta u+f(u, u_t)=0$ associated with a mixed nonhomogeneous condition,, Nonlinear Anal., 19 (1992), 613.  doi: 10.1016/0362-546X(92)90097-X.  Google Scholar

[9]

N. T. Long and T. N. Diem, On the nonlinear wave equation $u_{t t}-u_{x x}=f(x,t,u,u_x,u_t)$ associated with the mixed homogeneous conditions,, Nonlinear Anal., 29 (1997), 1217.  doi: 10.1016/S0362-546X(97)87360-9.  Google Scholar

[10]

N. T. Long, A. P. N. Dinh and T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar,, J. Boundary Value Prob., 2005 (2005), 337.  doi: 10.1155/BVP.2005.337.  Google Scholar

[11]

N. T. Long and L. X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition,, NA, 67 (2007), 842.  doi: 10.1016/j.na.2006.06.044.  Google Scholar

[12]

S. A. Messaoudi, Decay of the solution energy for a nonlinearly damped wave equation,, Arab. J. for Science and Engineering, 26 (2001), 63.   Google Scholar

[13]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part one,, J. Comput. Anal. Appl., 4 (2002), 91.  doi: 10.1023/A:1012934900316.  Google Scholar

[14]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part two,, J. Comput. Anal. Appl., 4 (2002), 211.  doi: 10.1023/A:1013151525487.  Google Scholar

[15]

G. P. Menzala, On global classical solutions of a nonlinear wave equation,, Appl. Anal., 10 (1980), 179.  doi: 10.1080/00036818008839300.  Google Scholar

[16]

S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation,, Math. Nachr., 260 (2003), 58.  doi: 10.1002/mana.200310104.  Google Scholar

[17]

M. Nakao, Decay of solutions of some nonlinear evolution equations,, J. Math. Anal. Appl., 60 (1977), 542.  doi: 10.1016/0022-247X(77)90040-3.  Google Scholar

[18]

Nakao and Mitsuhiro, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations,, Math. Z., 206 (1991), 265.  doi: 10.1007\%2FBF02571342.  Google Scholar

[19]

M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation,, Funkcial. Ekvac., 38 (1995), 417.  doi: http://www.math.kobe-u.ac.jp/\symbol{126}fe/xml/mr1374429.xml.  Google Scholar

[20]

L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution,, NA, 70 (2009), 3943.  doi: 10.1016/j.na.2008.08.004.  Google Scholar

[21]

K. Ono, On the global existence and decay of solutions for semilinear telegraph equations,, Int. J. Applied Math., 2 (2000), 1121.  doi: 10.1002/(SICI)1099-1476(200004)23:6.  Google Scholar

[22]

J. E. Munoz-Rivera and D. Andrade, Exponential decay of non-linear wave equation with a viscoelastic boundary condition,, Math. Methods Appl. Sci., 23 (2000), 41.  doi: 10.1002/(SICI)1099-1476(20000110)23:1.  Google Scholar

[23]

M. L. Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary,, Electronic J. Differential Equations, 73 (2001), 1.  doi: http://www.emis.de/journals/EJDE/Volumes/2001/73/santos.pdf.  Google Scholar

[24]

M. L. Santos, Decay rates for solutions of a system of wave equations with memory,, Electronic J. Differential Equations, 2002 (2002), 1.  doi: 10.1155/S1085337502204133.  Google Scholar

[25]

M. L. Santos, J. Ferreira, D. C. Pereira and C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary,, Nonlinear Anal., 54 (2003), 959.  doi: 10.1016/S0362-546X(03)00121-4.  Google Scholar

[26]

L. X. Truong, L. T. P. Ngoc, A. P. N. Dinh and N. T. Long, The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions,, NA, 11 (2010), 1289.  doi: 10.1016/j.nonrwa.2009.02.018.  Google Scholar

[1]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[2]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[3]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[4]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[5]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[6]

Perikles G. Papadopoulos, Nikolaos M. Stavrakakis. Global existence for a wave equation on $R^n$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 139-149. doi: 10.3934/dcdss.2008.1.139

[7]

Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407

[8]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[9]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[10]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure & Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[11]

Zhengce Zhang, Yan Li. Global existence and gradient blowup of solutions for a semilinear parabolic equation with exponential source. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 3019-3029. doi: 10.3934/dcdsb.2014.19.3019

[12]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[13]

Xie Li, Zhaoyin Xiang. Existence and nonexistence of local/global solutions for a nonhomogeneous heat equation. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1465-1480. doi: 10.3934/cpaa.2014.13.1465

[14]

Hiroshi Takeda. Global existence of solutions for higher order nonlinear damped wave equations. Conference Publications, 2011, 2011 (Special) : 1358-1367. doi: 10.3934/proc.2011.2011.1358

[15]

Bassam Kojok. Global existence for a forced dispersive dissipative equation via the I-method. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1401-1419. doi: 10.3934/cpaa.2009.8.1401

[16]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[17]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[18]

Yuming Qin, Lan Huang, Zhiyong Ma. Global existence and exponential stability in $H^4$ for the nonlinear compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1991-2012. doi: 10.3934/cpaa.2009.8.1991

[19]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[20]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Local existence with mild regularity for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 1011-1041. doi: 10.3934/krm.2013.6.1011

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]