September  2013, 12(5): 2001-2029. doi: 10.3934/cpaa.2013.12.2001

Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions

1. 

Nha Trang Educational College, 01 Nguyen Chanh Str., Nha Trang City, Vietnam

2. 

Department of Mathematics and Computer Science, University of Natural Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu Str., Dist.5, Ho Chi Minh City, Vietnam

Received  January 2012 Revised  November 2012 Published  January 2013

The paper is devoted to the study of a nonlinear wave equation with nonlocal boundary conditions of integral forms. First, we establish two local existence theorems by using Faedo-Galerkin method. Next, we give a sufficient condition to guarantee the global existence and exponential decay of weak solutions.
Citation: Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001
References:
[1]

R. G. C. Almeida and M. L. Santos, Lack of exponential decay of a coupled system of wave equations with memory,, NA, 40 (2001), 1159.  doi: 10.1016/j.nonrwa.2010.08.025.  Google Scholar

[2]

M. Bergounioux, N. T. Long and A. P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar,, Nonlinear Anal., 43 (2001), 547.  doi: 10.1016/S0362-546X(99)00218-7.  Google Scholar

[3]

S. A. Beilin, On a Mixed nonlocal problem for a wave equation,, Electronic J. Differential Equations, 2006 (2006), 1.  doi: http://ejde.math.txstate.edu/Volumes/2006/103/beilin.pdf.  Google Scholar

[4]

A. Benaissa and S. A. Messaoudi, Exponential decay of solutions of a nonlinearly damped wave equation,, Nonlinear Differ. Equ. Appl., 12 (2005), 391.  doi: 10.1007/s00030-005-0008-5.  Google Scholar

[5]

H. R. Clark, Global classical solutions to the Cauchy problem for a nonlinear wave equation,, Internat. J. Math. and Math. Sci., 21 (1998), 533.  doi: 10.1155/S016117129800074X.  Google Scholar

[6]

Lakshmikantham V and Leela S, "Differential and Integral Inequalities," Vol.1,, Academic Press, (1969).  doi: 10.1016/S0076-5392(08)62290-0.  Google Scholar

[7]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires,, Dunod, (1969).   Google Scholar

[8]

N. T. Long and A. P. N. Dinh, On the quasilinear wave equation: $u_{t t}-\Delta u+f(u, u_t)=0$ associated with a mixed nonhomogeneous condition,, Nonlinear Anal., 19 (1992), 613.  doi: 10.1016/0362-546X(92)90097-X.  Google Scholar

[9]

N. T. Long and T. N. Diem, On the nonlinear wave equation $u_{t t}-u_{x x}=f(x,t,u,u_x,u_t)$ associated with the mixed homogeneous conditions,, Nonlinear Anal., 29 (1997), 1217.  doi: 10.1016/S0362-546X(97)87360-9.  Google Scholar

[10]

N. T. Long, A. P. N. Dinh and T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar,, J. Boundary Value Prob., 2005 (2005), 337.  doi: 10.1155/BVP.2005.337.  Google Scholar

[11]

N. T. Long and L. X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition,, NA, 67 (2007), 842.  doi: 10.1016/j.na.2006.06.044.  Google Scholar

[12]

S. A. Messaoudi, Decay of the solution energy for a nonlinearly damped wave equation,, Arab. J. for Science and Engineering, 26 (2001), 63.   Google Scholar

[13]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part one,, J. Comput. Anal. Appl., 4 (2002), 91.  doi: 10.1023/A:1012934900316.  Google Scholar

[14]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part two,, J. Comput. Anal. Appl., 4 (2002), 211.  doi: 10.1023/A:1013151525487.  Google Scholar

[15]

G. P. Menzala, On global classical solutions of a nonlinear wave equation,, Appl. Anal., 10 (1980), 179.  doi: 10.1080/00036818008839300.  Google Scholar

[16]

S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation,, Math. Nachr., 260 (2003), 58.  doi: 10.1002/mana.200310104.  Google Scholar

[17]

M. Nakao, Decay of solutions of some nonlinear evolution equations,, J. Math. Anal. Appl., 60 (1977), 542.  doi: 10.1016/0022-247X(77)90040-3.  Google Scholar

[18]

Nakao and Mitsuhiro, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations,, Math. Z., 206 (1991), 265.  doi: 10.1007\%2FBF02571342.  Google Scholar

[19]

M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation,, Funkcial. Ekvac., 38 (1995), 417.  doi: http://www.math.kobe-u.ac.jp/\symbol{126}fe/xml/mr1374429.xml.  Google Scholar

[20]

L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution,, NA, 70 (2009), 3943.  doi: 10.1016/j.na.2008.08.004.  Google Scholar

[21]

K. Ono, On the global existence and decay of solutions for semilinear telegraph equations,, Int. J. Applied Math., 2 (2000), 1121.  doi: 10.1002/(SICI)1099-1476(200004)23:6.  Google Scholar

[22]

J. E. Munoz-Rivera and D. Andrade, Exponential decay of non-linear wave equation with a viscoelastic boundary condition,, Math. Methods Appl. Sci., 23 (2000), 41.  doi: 10.1002/(SICI)1099-1476(20000110)23:1.  Google Scholar

[23]

M. L. Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary,, Electronic J. Differential Equations, 73 (2001), 1.  doi: http://www.emis.de/journals/EJDE/Volumes/2001/73/santos.pdf.  Google Scholar

[24]

M. L. Santos, Decay rates for solutions of a system of wave equations with memory,, Electronic J. Differential Equations, 2002 (2002), 1.  doi: 10.1155/S1085337502204133.  Google Scholar

[25]

M. L. Santos, J. Ferreira, D. C. Pereira and C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary,, Nonlinear Anal., 54 (2003), 959.  doi: 10.1016/S0362-546X(03)00121-4.  Google Scholar

[26]

L. X. Truong, L. T. P. Ngoc, A. P. N. Dinh and N. T. Long, The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions,, NA, 11 (2010), 1289.  doi: 10.1016/j.nonrwa.2009.02.018.  Google Scholar

show all references

References:
[1]

R. G. C. Almeida and M. L. Santos, Lack of exponential decay of a coupled system of wave equations with memory,, NA, 40 (2001), 1159.  doi: 10.1016/j.nonrwa.2010.08.025.  Google Scholar

[2]

M. Bergounioux, N. T. Long and A. P. N. Dinh, Mathematical model for a shock problem involving a linear viscoelastic bar,, Nonlinear Anal., 43 (2001), 547.  doi: 10.1016/S0362-546X(99)00218-7.  Google Scholar

[3]

S. A. Beilin, On a Mixed nonlocal problem for a wave equation,, Electronic J. Differential Equations, 2006 (2006), 1.  doi: http://ejde.math.txstate.edu/Volumes/2006/103/beilin.pdf.  Google Scholar

[4]

A. Benaissa and S. A. Messaoudi, Exponential decay of solutions of a nonlinearly damped wave equation,, Nonlinear Differ. Equ. Appl., 12 (2005), 391.  doi: 10.1007/s00030-005-0008-5.  Google Scholar

[5]

H. R. Clark, Global classical solutions to the Cauchy problem for a nonlinear wave equation,, Internat. J. Math. and Math. Sci., 21 (1998), 533.  doi: 10.1155/S016117129800074X.  Google Scholar

[6]

Lakshmikantham V and Leela S, "Differential and Integral Inequalities," Vol.1,, Academic Press, (1969).  doi: 10.1016/S0076-5392(08)62290-0.  Google Scholar

[7]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires,, Dunod, (1969).   Google Scholar

[8]

N. T. Long and A. P. N. Dinh, On the quasilinear wave equation: $u_{t t}-\Delta u+f(u, u_t)=0$ associated with a mixed nonhomogeneous condition,, Nonlinear Anal., 19 (1992), 613.  doi: 10.1016/0362-546X(92)90097-X.  Google Scholar

[9]

N. T. Long and T. N. Diem, On the nonlinear wave equation $u_{t t}-u_{x x}=f(x,t,u,u_x,u_t)$ associated with the mixed homogeneous conditions,, Nonlinear Anal., 29 (1997), 1217.  doi: 10.1016/S0362-546X(97)87360-9.  Google Scholar

[10]

N. T. Long, A. P. N. Dinh and T. N. Diem, On a shock problem involving a nonlinear viscoelastic bar,, J. Boundary Value Prob., 2005 (2005), 337.  doi: 10.1155/BVP.2005.337.  Google Scholar

[11]

N. T. Long and L. X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition,, NA, 67 (2007), 842.  doi: 10.1016/j.na.2006.06.044.  Google Scholar

[12]

S. A. Messaoudi, Decay of the solution energy for a nonlinearly damped wave equation,, Arab. J. for Science and Engineering, 26 (2001), 63.   Google Scholar

[13]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part one,, J. Comput. Anal. Appl., 4 (2002), 91.  doi: 10.1023/A:1012934900316.  Google Scholar

[14]

L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part two,, J. Comput. Anal. Appl., 4 (2002), 211.  doi: 10.1023/A:1013151525487.  Google Scholar

[15]

G. P. Menzala, On global classical solutions of a nonlinear wave equation,, Appl. Anal., 10 (1980), 179.  doi: 10.1080/00036818008839300.  Google Scholar

[16]

S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelastic wave equation,, Math. Nachr., 260 (2003), 58.  doi: 10.1002/mana.200310104.  Google Scholar

[17]

M. Nakao, Decay of solutions of some nonlinear evolution equations,, J. Math. Anal. Appl., 60 (1977), 542.  doi: 10.1016/0022-247X(77)90040-3.  Google Scholar

[18]

Nakao and Mitsuhiro, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations,, Math. Z., 206 (1991), 265.  doi: 10.1007\%2FBF02571342.  Google Scholar

[19]

M. Nakao and K. Ono, Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation,, Funkcial. Ekvac., 38 (1995), 417.  doi: http://www.math.kobe-u.ac.jp/\symbol{126}fe/xml/mr1374429.xml.  Google Scholar

[20]

L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution,, NA, 70 (2009), 3943.  doi: 10.1016/j.na.2008.08.004.  Google Scholar

[21]

K. Ono, On the global existence and decay of solutions for semilinear telegraph equations,, Int. J. Applied Math., 2 (2000), 1121.  doi: 10.1002/(SICI)1099-1476(200004)23:6.  Google Scholar

[22]

J. E. Munoz-Rivera and D. Andrade, Exponential decay of non-linear wave equation with a viscoelastic boundary condition,, Math. Methods Appl. Sci., 23 (2000), 41.  doi: 10.1002/(SICI)1099-1476(20000110)23:1.  Google Scholar

[23]

M. L. Santos, Asymptotic behavior of solutions to wave equations with a memory condition at the boundary,, Electronic J. Differential Equations, 73 (2001), 1.  doi: http://www.emis.de/journals/EJDE/Volumes/2001/73/santos.pdf.  Google Scholar

[24]

M. L. Santos, Decay rates for solutions of a system of wave equations with memory,, Electronic J. Differential Equations, 2002 (2002), 1.  doi: 10.1155/S1085337502204133.  Google Scholar

[25]

M. L. Santos, J. Ferreira, D. C. Pereira and C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary,, Nonlinear Anal., 54 (2003), 959.  doi: 10.1016/S0362-546X(03)00121-4.  Google Scholar

[26]

L. X. Truong, L. T. P. Ngoc, A. P. N. Dinh and N. T. Long, The regularity and exponential decay of solution for a linear wave equation associated with two-point boundary conditions,, NA, 11 (2010), 1289.  doi: 10.1016/j.nonrwa.2009.02.018.  Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[6]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[7]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[8]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[16]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[17]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]