\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Distributional chaos for strongly continuous semigroups of operators

Abstract / Introduction Related Papers Cited by
  • Distributional chaos for strongly continuous semigroups is studied and characterized. It is shown to be equivalent to the existence of a distributionally irregular vector. Finally, a sufficient condition for distributional chaos on the point spectrum of the generator of the semigroup is presented. An application to the semigroup generated in $L^2(R)$ by a translation of the Ornstein-Uhlenbeck operator is also given.
    Mathematics Subject Classification: 47A16, 47D06, 37D45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Banasiak and M. Moszyński, Dynamics of birth-and-death processes with proliferation—stability and chaos, Discrete Contin. Dyn. Syst., 29 (2011), 67-79.doi: 10.3934/dcds.2011.29.67.

    [2]

    X. Barrachina and A. Peris, Distributionally chaotic translation semigroups, J. Difference Equ. Appl., 18 (2012), 751-761.doi: 10.1080/10236198.2011.625945.

    [3]

    F. Bayart and S. Grivaux, Hypercyclicity and unimodular point spectrum, J. Funct. Anal., 226 (2005), 281-300.doi: 10.1016/j.jfa.2005.06.001.

    [4]

    F. Bayart and É. Matheron, "Dynamics of Linear Operators,'' $1^{st}$ edition, Cambridge University Press, Cambridge, 2009.doi: 10.1017/CBO9780511581113.

    [5]

    B. Beauzamy, "Introduction to Operator Theory and Invariant Subspaces,'' $1^{st}$ edition, North-Holland Publishing Co., Amsterdam, 1988.

    [6]

    T. Bermúdez, A. Bonilla, J. A. Conejero and A. Peris, Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math., 170 (2005), 57-75.doi: 10.4064/sm170-1-3.

    [7]

    T. Bermúdez, A. Bonilla, F. Martínez-Giménez and A. Peris, Li-Yorke and distributionally chaotic operators, J. Math. Anal. Appl., 373 (2011), 83-93.doi: 10.1016/j.jmaa.2010.06.011.

    [8]

    N.C. Bernardes, A. Bonilla, V. Müller and A. PerisDistributional chaos for linear operators, preprint.

    [9]

    J. A. Conejero and E. M. Mangino, Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators, Mediterr. J. Math., 7 (2010), 101-109.doi: 10.1007/s00009-010-0030-7.

    [10]

    J. A. Conejero, V. Müller and A. Peris, Hypercyclic behaviour of operators in a hypercyclic $C_0$-semigroup, J. Funct. Anal., 244 (2007), 342-348.doi: 10.1016/j.jfa.2006.12.008.

    [11]

    J. A. Conejero and A. Peris, Hypercyclic translation $C_0$-semigroups on complex sectors, Discrete Contin. Dyn. Syst., 25 (2009), 1195-1208.doi: 10.3934/dcds.2009.25.1195.

    [12]

    W. Desch, W. Schappacher and G. F. Webb, Hypercyclic and Chaotic Semigroups of Linear Operators, Ergodic Theory Dynam. Systems, 17 (1997), 793-819.doi: 10.1017/S0143385797084976.

    [13]

    K.J. Engel and R. Nagel, "One-parameter Semigroups for Linear Evolution Equations,'' $1^{st}$ edition, Springer-Verlag, New York, 2000.

    [14]

    M. C. Gómez-Collado, F. Martínez-Giménez, A. Peris and F. Rodenas, Slow growth for universal harmonic functions, J. Inequal. Appl., 2010, Article ID 253690, (2010), 6 pp.doi: 10.1155/2010/253690.

    [15]

    S. Grivaux, A new class of frequently hypercyclic operators, Indiana Univ. Math. J., 60 (2011), 1177-1202.doi: 10.1512/iumj.2011.60.4350.

    [16]

    K. G. Grosse-Erdmann and A. Peris Manguillot, "Linear Chaos,'' $1^{st}$ edition, Universitext, Springer, London, 2011.doi: 10.1007/978-1-4471-2170-1.

    [17]

    B. Hou, P. Cui and Y. Cao, Chaos for Cowen-Douglas operators, Proc. Amer. Math. Soc., 138 (2010), 929-936.doi: 10.1090/S0002-9939-09-10046-1.

    [18]

    B. Hou, G. Tian and L. Shi, Some dynamical properties for linear operators, Illinois J. Math., 53 (2009), 857-864.

    [19]

    H. König, On the Fourier-coefficients of vector-valued functions, Math. Nachr., 152 (1991), 215-227.doi: 10.1002/mana.19911520118.

    [20]

    E. M. Mangino and A. Peris, Frequently hypercyclic semigroups, Studia Math., 202 (2011), 227-242.doi: 10.4064/sm202-3-2.

    [21]

    F. Martínez-Giménez, P. Oprocha and A. Peris, Distributional chaos for backward shifts, J. Math. Anal. Appl., 351 (2009), 607-615.doi: 10.1016/j.jmaa.2008.10.049.

    [22]

    F. Martínez-Giménez, P. Oprocha, A. PerisDistributional chaos for operators with full scrambled sets, Math. Z. (To appear). doi: 10.1007/s00209-012-1087-8.

    [23]

    G. Metafune, $L^p$-spectrum of Ornstein-Uhlenbeck operators, {Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 30 (2001), 97-124.

    [24]

    P. Oprocha, A quantum harmonic oscillator and strong chaos, J. Phys. A, 39 (2006), 14559-14565.doi: 10.1088/0305-4470/39/47/003.

    [25]

    P. Oprocha, Distributional chaos revisited, Trans. Amer. Math. Soc., 361 (2009), 4901-4925.doi: 10.1090/S0002-9947-09-04810-7.

    [26]

    P. Oprocha., Coherent lists and chaotic sets, Discrete Contin. Dyn. Syst., 31 (2011), 797-825.doi: 10.3934/dcds.2011.31.797.

    [27]

    T. Ransford, Eigenvalues and power growth, Israel J. Math., 146 (2005), 93-110.doi: 10.1007/BF02773528.

    [28]

    R. Rudnicki, Chaoticity and invariant measures for a cell population model, J. Math. Anal. Appl., 393 (2012), 151-165.doi: 10.1016/j.jmaa.2012.03.055.

    [29]

    B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994), 737-754.doi: 10.2307/2154504.

    [30]

    X. Wu and P. Zhu, The principal measure of a quantum harmonic oscillator, J. Phys. A, 44, 505101 (2011), 6 pp.doi: 10.1088/1751-8113/44/50/505101.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(66) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return