September  2013, 12(5): 2069-2082. doi: 10.3934/cpaa.2013.12.2069

Distributional chaos for strongly continuous semigroups of operators

1. 

Department of Mathematics “E. De Giorgi”, University of Salento, P.O. Box 193, Via Per Arnesano, 73100 Lecce, Italy

2. 

Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Edifici 8E, 46022 València, Spain

3. 

Dipartimento di Matematica e Fisica "Ennio De Giorgi'', Università del Salento, Via Per Arnesano P.O. Box 193, 73100 Lecce, Italy

4. 

Departament de Matemàtica Aplicada & IUMPA Edifici 7A, Universitat Politècnica de València, E-46022, València

Received  February 2012 Revised  October 2012 Published  January 2013

Distributional chaos for strongly continuous semigroups is studied and characterized. It is shown to be equivalent to the existence of a distributionally irregular vector. Finally, a sufficient condition for distributional chaos on the point spectrum of the generator of the semigroup is presented. An application to the semigroup generated in $L^2(R)$ by a translation of the Ornstein-Uhlenbeck operator is also given.
Citation: Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069
References:
[1]

J. Banasiak and M. Moszyński, Dynamics of birth-and-death processes with proliferation—stability and chaos,, {Discrete Contin. Dyn. Syst.}, 29 (2011), 67.  doi: 10.3934/dcds.2011.29.67.  Google Scholar

[2]

X. Barrachina and A. Peris, Distributionally chaotic translation semigroups,, {J. Difference Equ. Appl.}, 18 (2012), 751.  doi: 10.1080/10236198.2011.625945.  Google Scholar

[3]

F. Bayart and S. Grivaux, Hypercyclicity and unimodular point spectrum,, {J. Funct. Anal.}, 226 (2005), 281.  doi: 10.1016/j.jfa.2005.06.001.  Google Scholar

[4]

F. Bayart and É. Matheron, "Dynamics of Linear Operators,'', $1^{st}$ edition, (2009).  doi: 10.1017/CBO9780511581113.  Google Scholar

[5]

B. Beauzamy, "Introduction to Operator Theory and Invariant Subspaces,'', 1$^{st}$ edition, (1988).   Google Scholar

[6]

T. Bermúdez, A. Bonilla, J. A. Conejero and A. Peris, Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces,, {Studia Math.}, 170 (2005), 57.  doi: 10.4064/sm170-1-3.  Google Scholar

[7]

T. Bermúdez, A. Bonilla, F. Martínez-Giménez and A. Peris, Li-Yorke and distributionally chaotic operators,, {J. Math. Anal. Appl.}, 373 (2011), 83.  doi: 10.1016/j.jmaa.2010.06.011.  Google Scholar

[8]

N.C. Bernardes, A. Bonilla, V. Müller and A. Peris, Distributional chaos for linear operators,, preprint., ().   Google Scholar

[9]

J. A. Conejero and E. M. Mangino, Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators,, {Mediterr. J. Math.}, 7 (2010), 101.  doi: 10.1007/s00009-010-0030-7.  Google Scholar

[10]

J. A. Conejero, V. Müller and A. Peris, Hypercyclic behaviour of operators in a hypercyclic $C_0$-semigroup,, {J. Funct. Anal.}, 244 (2007), 342.  doi: 10.1016/j.jfa.2006.12.008.  Google Scholar

[11]

J. A. Conejero and A. Peris, Hypercyclic translation $C_0$-semigroups on complex sectors,, {Discrete Contin. Dyn. Syst.}, 25 (2009), 1195.  doi: 10.3934/dcds.2009.25.1195.  Google Scholar

[12]

W. Desch, W. Schappacher and G. F. Webb, Hypercyclic and Chaotic Semigroups of Linear Operators,, {Ergodic Theory Dynam. Systems}, 17 (1997), 793.  doi: 10.1017/S0143385797084976.  Google Scholar

[13]

K.J. Engel and R. Nagel, "One-parameter Semigroups for Linear Evolution Equations,'', 1$^{st}$ edition, (2000).   Google Scholar

[14]

M. C. Gómez-Collado, F. Martínez-Giménez, A. Peris and F. Rodenas, Slow growth for universal harmonic functions,, {J. Inequal. Appl.}, 2010 (2010).  doi: 10.1155/2010/253690.  Google Scholar

[15]

S. Grivaux, A new class of frequently hypercyclic operators,, {Indiana Univ. Math. J.}, 60 (2011), 1177.  doi: 10.1512/iumj.2011.60.4350.  Google Scholar

[16]

K. G. Grosse-Erdmann and A. Peris Manguillot, "Linear Chaos,'', 1$^{st}$ edition, (2011).  doi: 10.1007/978-1-4471-2170-1.  Google Scholar

[17]

B. Hou, P. Cui and Y. Cao, Chaos for Cowen-Douglas operators,, {Proc. Amer. Math. Soc.}, 138 (2010), 929.  doi: 10.1090/S0002-9939-09-10046-1.  Google Scholar

[18]

B. Hou, G. Tian and L. Shi, Some dynamical properties for linear operators,, {Illinois J. Math.}, 53 (2009), 857.   Google Scholar

[19]

H. König, On the Fourier-coefficients of vector-valued functions,, {Math. Nachr.}, 152 (1991), 215.  doi: 10.1002/mana.19911520118.  Google Scholar

[20]

E. M. Mangino and A. Peris, Frequently hypercyclic semigroups,, {Studia Math.}, 202 (2011), 227.  doi: 10.4064/sm202-3-2.  Google Scholar

[21]

F. Martínez-Giménez, P. Oprocha and A. Peris, Distributional chaos for backward shifts,, {J. Math. Anal. Appl.}, 351 (2009), 607.  doi: 10.1016/j.jmaa.2008.10.049.  Google Scholar

[22]

F. Martínez-Giménez, P. Oprocha, A. Peris, Distributional chaos for operators with full scrambled sets,, {Math. Z.} (To appear)., ().  doi: 10.1007/s00209-012-1087-8.  Google Scholar

[23]

G. Metafune, $L^p$-spectrum of Ornstein-Uhlenbeck operators,, {Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 30 (2001), 97.   Google Scholar

[24]

P. Oprocha, A quantum harmonic oscillator and strong chaos,, {J. Phys. A}, 39 (2006), 14559.  doi: 10.1088/0305-4470/39/47/003.  Google Scholar

[25]

P. Oprocha, Distributional chaos revisited,, {Trans. Amer. Math. Soc.}, 361 (2009), 4901.  doi: 10.1090/S0002-9947-09-04810-7.  Google Scholar

[26]

P. Oprocha., Coherent lists and chaotic sets,, {Discrete Contin. Dyn. Syst.}, 31 (2011), 797.  doi: 10.3934/dcds.2011.31.797.  Google Scholar

[27]

T. Ransford, Eigenvalues and power growth,, {Israel J. Math.}, 146 (2005), 93.  doi: 10.1007/BF02773528.  Google Scholar

[28]

R. Rudnicki, Chaoticity and invariant measures for a cell population model,, {J. Math. Anal. Appl.}, 393 (2012), 151.  doi: 10.1016/j.jmaa.2012.03.055.  Google Scholar

[29]

B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval,, {Trans. Amer. Math. Soc.}, 344 (1994), 737.  doi: 10.2307/2154504.  Google Scholar

[30]

X. Wu and P. Zhu, The principal measure of a quantum harmonic oscillator,, {J. Phys. A}, 44 (2011).  doi: 10.1088/1751-8113/44/50/505101.  Google Scholar

show all references

References:
[1]

J. Banasiak and M. Moszyński, Dynamics of birth-and-death processes with proliferation—stability and chaos,, {Discrete Contin. Dyn. Syst.}, 29 (2011), 67.  doi: 10.3934/dcds.2011.29.67.  Google Scholar

[2]

X. Barrachina and A. Peris, Distributionally chaotic translation semigroups,, {J. Difference Equ. Appl.}, 18 (2012), 751.  doi: 10.1080/10236198.2011.625945.  Google Scholar

[3]

F. Bayart and S. Grivaux, Hypercyclicity and unimodular point spectrum,, {J. Funct. Anal.}, 226 (2005), 281.  doi: 10.1016/j.jfa.2005.06.001.  Google Scholar

[4]

F. Bayart and É. Matheron, "Dynamics of Linear Operators,'', $1^{st}$ edition, (2009).  doi: 10.1017/CBO9780511581113.  Google Scholar

[5]

B. Beauzamy, "Introduction to Operator Theory and Invariant Subspaces,'', 1$^{st}$ edition, (1988).   Google Scholar

[6]

T. Bermúdez, A. Bonilla, J. A. Conejero and A. Peris, Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces,, {Studia Math.}, 170 (2005), 57.  doi: 10.4064/sm170-1-3.  Google Scholar

[7]

T. Bermúdez, A. Bonilla, F. Martínez-Giménez and A. Peris, Li-Yorke and distributionally chaotic operators,, {J. Math. Anal. Appl.}, 373 (2011), 83.  doi: 10.1016/j.jmaa.2010.06.011.  Google Scholar

[8]

N.C. Bernardes, A. Bonilla, V. Müller and A. Peris, Distributional chaos for linear operators,, preprint., ().   Google Scholar

[9]

J. A. Conejero and E. M. Mangino, Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators,, {Mediterr. J. Math.}, 7 (2010), 101.  doi: 10.1007/s00009-010-0030-7.  Google Scholar

[10]

J. A. Conejero, V. Müller and A. Peris, Hypercyclic behaviour of operators in a hypercyclic $C_0$-semigroup,, {J. Funct. Anal.}, 244 (2007), 342.  doi: 10.1016/j.jfa.2006.12.008.  Google Scholar

[11]

J. A. Conejero and A. Peris, Hypercyclic translation $C_0$-semigroups on complex sectors,, {Discrete Contin. Dyn. Syst.}, 25 (2009), 1195.  doi: 10.3934/dcds.2009.25.1195.  Google Scholar

[12]

W. Desch, W. Schappacher and G. F. Webb, Hypercyclic and Chaotic Semigroups of Linear Operators,, {Ergodic Theory Dynam. Systems}, 17 (1997), 793.  doi: 10.1017/S0143385797084976.  Google Scholar

[13]

K.J. Engel and R. Nagel, "One-parameter Semigroups for Linear Evolution Equations,'', 1$^{st}$ edition, (2000).   Google Scholar

[14]

M. C. Gómez-Collado, F. Martínez-Giménez, A. Peris and F. Rodenas, Slow growth for universal harmonic functions,, {J. Inequal. Appl.}, 2010 (2010).  doi: 10.1155/2010/253690.  Google Scholar

[15]

S. Grivaux, A new class of frequently hypercyclic operators,, {Indiana Univ. Math. J.}, 60 (2011), 1177.  doi: 10.1512/iumj.2011.60.4350.  Google Scholar

[16]

K. G. Grosse-Erdmann and A. Peris Manguillot, "Linear Chaos,'', 1$^{st}$ edition, (2011).  doi: 10.1007/978-1-4471-2170-1.  Google Scholar

[17]

B. Hou, P. Cui and Y. Cao, Chaos for Cowen-Douglas operators,, {Proc. Amer. Math. Soc.}, 138 (2010), 929.  doi: 10.1090/S0002-9939-09-10046-1.  Google Scholar

[18]

B. Hou, G. Tian and L. Shi, Some dynamical properties for linear operators,, {Illinois J. Math.}, 53 (2009), 857.   Google Scholar

[19]

H. König, On the Fourier-coefficients of vector-valued functions,, {Math. Nachr.}, 152 (1991), 215.  doi: 10.1002/mana.19911520118.  Google Scholar

[20]

E. M. Mangino and A. Peris, Frequently hypercyclic semigroups,, {Studia Math.}, 202 (2011), 227.  doi: 10.4064/sm202-3-2.  Google Scholar

[21]

F. Martínez-Giménez, P. Oprocha and A. Peris, Distributional chaos for backward shifts,, {J. Math. Anal. Appl.}, 351 (2009), 607.  doi: 10.1016/j.jmaa.2008.10.049.  Google Scholar

[22]

F. Martínez-Giménez, P. Oprocha, A. Peris, Distributional chaos for operators with full scrambled sets,, {Math. Z.} (To appear)., ().  doi: 10.1007/s00209-012-1087-8.  Google Scholar

[23]

G. Metafune, $L^p$-spectrum of Ornstein-Uhlenbeck operators,, {Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 30 (2001), 97.   Google Scholar

[24]

P. Oprocha, A quantum harmonic oscillator and strong chaos,, {J. Phys. A}, 39 (2006), 14559.  doi: 10.1088/0305-4470/39/47/003.  Google Scholar

[25]

P. Oprocha, Distributional chaos revisited,, {Trans. Amer. Math. Soc.}, 361 (2009), 4901.  doi: 10.1090/S0002-9947-09-04810-7.  Google Scholar

[26]

P. Oprocha., Coherent lists and chaotic sets,, {Discrete Contin. Dyn. Syst.}, 31 (2011), 797.  doi: 10.3934/dcds.2011.31.797.  Google Scholar

[27]

T. Ransford, Eigenvalues and power growth,, {Israel J. Math.}, 146 (2005), 93.  doi: 10.1007/BF02773528.  Google Scholar

[28]

R. Rudnicki, Chaoticity and invariant measures for a cell population model,, {J. Math. Anal. Appl.}, 393 (2012), 151.  doi: 10.1016/j.jmaa.2012.03.055.  Google Scholar

[29]

B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval,, {Trans. Amer. Math. Soc.}, 344 (1994), 737.  doi: 10.2307/2154504.  Google Scholar

[30]

X. Wu and P. Zhu, The principal measure of a quantum harmonic oscillator,, {J. Phys. A}, 44 (2011).  doi: 10.1088/1751-8113/44/50/505101.  Google Scholar

[1]

José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1195-1208. doi: 10.3934/dcds.2009.25.1195

[2]

Piotr Oprocha. Specification properties and dense distributional chaos. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821

[3]

Piotr Oprocha, Pawel Wilczynski. Distributional chaos via isolating segments. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 347-356. doi: 10.3934/dcdsb.2007.8.347

[4]

Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082

[5]

Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 577-587. doi: 10.3934/dcds.2008.20.577

[6]

Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451

[7]

Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361

[8]

Chuanxin Zhao, Lin Jiang, Kok Lay Teo. A hybrid chaos firefly algorithm for three-dimensional irregular packing problem. Journal of Industrial & Management Optimization, 2020, 16 (1) : 409-429. doi: 10.3934/jimo.2018160

[9]

Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758

[10]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[11]

Marc Briane, Vincenzo Nesi. Distributional convergence of null Lagrangians under very mild conditions. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 493-510. doi: 10.3934/dcdsb.2007.8.493

[12]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[13]

Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275

[14]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[15]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

[16]

Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383

[17]

Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1917-1932. doi: 10.3934/dcdsb.2015.20.1917

[18]

Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861

[19]

J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653

[20]

Adam Bobrowski, Adam Gregosiewicz, Małgorzata Murat. Functionals-preserving cosine families generated by Laplace operators in C[0,1]. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1877-1895. doi: 10.3934/dcdsb.2015.20.1877

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (14)

[Back to Top]