September  2013, 12(5): 2083-2090. doi: 10.3934/cpaa.2013.12.2083

The sign of the wave speed for the Lotka-Volterra competition-diffusion system

1. 

Department of Mathematics, Tamkang University, 151, Ying-Chuan Road, Tamsui, Taipei County 25137

2. 

Department of Mathematics, National Taiwan Normal University, 88, S-4, Ting Chou Road, Taipei 11677

Received  March 2012 Revised  September 2012 Published  January 2013

In this paper, we study the traveling front solutions of the Lotka-Volterra competition-diffusion system with bistable nonlinearity. It is well-known that the wave speed of traveling front is unique. Although little is known for the sign of the wave speed. In this paper, we first study the standing wave which gives some criteria when the speed is zero. Then, by the monotone dependence on parameters, we obtain some criteria about the sign of the wave speed under some parameter restrictions.
Citation: Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083
References:
[1]

C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitve reaction-diffusion model,, {Indiana Univ. Math. J.}, 33 (1984), 319.   Google Scholar

[2]

R. A. Gardner, Existence and stability of traveling wave solutions of competition models: A degree theoretic approach,, {J. Differential Equations}, 44 (1982), 343.  doi: 10.1016/0022-0396(82)90001-8.  Google Scholar

[3]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, {J. Dyn. Diff. Equat.}, 23 (2011), 353.  doi: 10.1007/s10884-011-9214-5.  Google Scholar

[4]

Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model,, {Bulletin of Math. Biology}, 60 (1998), 435.  doi: 10.1006/bulm.1997.0008.  Google Scholar

[5]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations,, {IAM J. Math. Anal.}, 26 (1995), 340.  doi: 10.1137/S0036141093244556.  Google Scholar

[6]

Y. Kan-on, Existence of standing waves for competition-diffusion equations,, {Japan J. Indust. Appl. Math.}, 13 (1996), 117.  doi: 10.1007/BF03167302.  Google Scholar

[7]

Y. Kan-on, Stability of monotone travelling waves for competition-diffusion equations,, {Japan J. Indust. Appl. Math.}, 13 (1996), 343.  doi: 10.1007/BF03167252.  Google Scholar

[8]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, {Nonlinear Analysis, 28 (1997), 145.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[9]

Y. Kan-on and E. Yanagida, Existence of nonconstant stable equilibria in competition-diffusion equations,, {Hiroshima Math. J.}, 23 (1993), 193.   Google Scholar

[10]

M. Mimura and P. C. Fife, A 3-component system of competition and diffusion,, {Hiroshima Math. J.}, 16 (1986), 189.   Google Scholar

[11]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system,, {Hiroshima Math. J.}, 30 (2000), 257.   Google Scholar

[12]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion,, {Arch. Rational Mech. Anal.}, 73 (1980), 69.  doi: 10.1007/BF00283257.  Google Scholar

show all references

References:
[1]

C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave solutions of a competitve reaction-diffusion model,, {Indiana Univ. Math. J.}, 33 (1984), 319.   Google Scholar

[2]

R. A. Gardner, Existence and stability of traveling wave solutions of competition models: A degree theoretic approach,, {J. Differential Equations}, 44 (1982), 343.  doi: 10.1016/0022-0396(82)90001-8.  Google Scholar

[3]

J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system,, {J. Dyn. Diff. Equat.}, 23 (2011), 353.  doi: 10.1007/s10884-011-9214-5.  Google Scholar

[4]

Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model,, {Bulletin of Math. Biology}, 60 (1998), 435.  doi: 10.1006/bulm.1997.0008.  Google Scholar

[5]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations,, {IAM J. Math. Anal.}, 26 (1995), 340.  doi: 10.1137/S0036141093244556.  Google Scholar

[6]

Y. Kan-on, Existence of standing waves for competition-diffusion equations,, {Japan J. Indust. Appl. Math.}, 13 (1996), 117.  doi: 10.1007/BF03167302.  Google Scholar

[7]

Y. Kan-on, Stability of monotone travelling waves for competition-diffusion equations,, {Japan J. Indust. Appl. Math.}, 13 (1996), 343.  doi: 10.1007/BF03167252.  Google Scholar

[8]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, {Nonlinear Analysis, 28 (1997), 145.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[9]

Y. Kan-on and E. Yanagida, Existence of nonconstant stable equilibria in competition-diffusion equations,, {Hiroshima Math. J.}, 23 (1993), 193.   Google Scholar

[10]

M. Mimura and P. C. Fife, A 3-component system of competition and diffusion,, {Hiroshima Math. J.}, 16 (1986), 189.   Google Scholar

[11]

M. Rodrigo and M. Mimura, Exact solutions of a competition-diffusion system,, {Hiroshima Math. J.}, 30 (2000), 257.   Google Scholar

[12]

M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion,, {Arch. Rational Mech. Anal.}, 73 (1980), 69.  doi: 10.1007/BF00283257.  Google Scholar

[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[6]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[9]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[13]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[18]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]