• Previous Article
    Existence of positive steady states for a predator-prey model with diffusion
  • CPAA Home
  • This Issue
  • Next Article
    Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves
September  2013, 12(5): 2173-2187. doi: 10.3934/cpaa.2013.12.2173

The Fractional Ginzburg-Landau equation with distributional initial data

1. 

Department of Mathematics, Jinan University, Guangzhou 510632, China

2. 

Department of Mathematics, Shenzhen University, Shenzhen 518060, China

Received  June 2012 Revised  October 2012 Published  January 2013

The paper is concerned with real fractional Ginzburg-Landau equation. Existence and uniqueness of local and global mild solution with distributional initial data are obtained by contraction mapping principle and carefully choosing the working space, and Gevrey regularity of mild solution for flat torus case is discussed.
Citation: Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173
References:
[1]

G. Zaslavsky, "Hamiltonian Chaos and Fractional Dynamics," Oxford University Press, Oxford, 2005.

[2]

V. Tarasov, "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media,'' Springer-Verlag, Berlin Heidelberg, jointly with Higher Education Press, Beijing, 2011.

[3]

G. Wilk and Z. Wlodarczyk, Do we observe Levy flights in cosmic rays? Nucl. Phys., B75A (1999), 191-193.

[4]

M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45 (2004), 3339-3352. doi: 10.1063/1.1769611.

[5]

G. Zaslavsky and A. Edelman, Fractional kinetics: from pseudochaotic dynamics to Maxwell's demon, Physica D., 193 (2004), 128-147. doi: 10.1016/j.physd.2004.01.014.

[6]

F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math., 118 (2000), 283-299. doi: 10.1016/S0377-0427(00)00294-6.

[7]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3.

[8]

H. Weitzner and G. Zaslavdky, Some applications of fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 273-281. doi: 10.1016/S1007-5704(03)00049-2.

[9]

V. Tarasov and G. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction, Chaos., 16 (2006), 023110. doi: 10.1063/1.2197167.

[10]

Y. Nec, A. Nepomnyashchy and A. Golovin, Oscillatory instability in super-diffusive reaction-diffusion systems: Fractional amplitude and phase diffusion equations, Phys. Rev. E., 78 (2008), 060102.

[11]

V. Tarasov and G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249-261. doi: 10.1016/j.physa.2005.02.047.

[12]

A. Milovanov and J. Rasmussen, Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media, Phys. Lett. A., 337 (2005), 75-80. doi: 10.1016/j.physleta.2005.01.047.

[13]

V. Tarasov, Psi-series solution of fractional Ginzburg-Landau equation, J. Phys. A: Math. Gen., 39 (2006), 8395-8407.

[14]

J. Li and L. Xia, Well-posedness of fractional Ginzburg-Landau equation in sobolev spaces, Appl. Anal., in press, DOI:10.1080/00036811.2011.649733. doi: 10.1080/00036811.2011.649733.

[15]

J. Wu, Well-posedness of a semi-linear heat equation with weak initial data, J. Fourier. Anal. Appl., 4 (1998), 629-642. doi: 10.1007/BF02498228.

[16]

T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data, Int. Math. Res. Not., 10 (1994), 435-444. doi: 10.1155/S1073792894000474.

[17]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Elect. J. Differ. Equ., 2001 (2001), 1-13.

[18]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differetial Equations," Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[19]

B. Guo, H. Huang and M. Jiang, "Ginzburg-Landau Equation,'' Chinese ed, Science Press, Beijing, China, 2002.

show all references

References:
[1]

G. Zaslavsky, "Hamiltonian Chaos and Fractional Dynamics," Oxford University Press, Oxford, 2005.

[2]

V. Tarasov, "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media,'' Springer-Verlag, Berlin Heidelberg, jointly with Higher Education Press, Beijing, 2011.

[3]

G. Wilk and Z. Wlodarczyk, Do we observe Levy flights in cosmic rays? Nucl. Phys., B75A (1999), 191-193.

[4]

M. Naber, Time fractional Schrödinger equation, J. Math. Phys., 45 (2004), 3339-3352. doi: 10.1063/1.1769611.

[5]

G. Zaslavsky and A. Edelman, Fractional kinetics: from pseudochaotic dynamics to Maxwell's demon, Physica D., 193 (2004), 128-147. doi: 10.1016/j.physd.2004.01.014.

[6]

F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes, J. Comput. Appl. Math., 118 (2000), 283-299. doi: 10.1016/S0377-0427(00)00294-6.

[7]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77. doi: 10.1016/S0370-1573(00)00070-3.

[8]

H. Weitzner and G. Zaslavdky, Some applications of fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 273-281. doi: 10.1016/S1007-5704(03)00049-2.

[9]

V. Tarasov and G. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction, Chaos., 16 (2006), 023110. doi: 10.1063/1.2197167.

[10]

Y. Nec, A. Nepomnyashchy and A. Golovin, Oscillatory instability in super-diffusive reaction-diffusion systems: Fractional amplitude and phase diffusion equations, Phys. Rev. E., 78 (2008), 060102.

[11]

V. Tarasov and G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249-261. doi: 10.1016/j.physa.2005.02.047.

[12]

A. Milovanov and J. Rasmussen, Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media, Phys. Lett. A., 337 (2005), 75-80. doi: 10.1016/j.physleta.2005.01.047.

[13]

V. Tarasov, Psi-series solution of fractional Ginzburg-Landau equation, J. Phys. A: Math. Gen., 39 (2006), 8395-8407.

[14]

J. Li and L. Xia, Well-posedness of fractional Ginzburg-Landau equation in sobolev spaces, Appl. Anal., in press, DOI:10.1080/00036811.2011.649733. doi: 10.1080/00036811.2011.649733.

[15]

J. Wu, Well-posedness of a semi-linear heat equation with weak initial data, J. Fourier. Anal. Appl., 4 (1998), 629-642. doi: 10.1007/BF02498228.

[16]

T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data, Int. Math. Res. Not., 10 (1994), 435-444. doi: 10.1155/S1073792894000474.

[17]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Elect. J. Differ. Equ., 2001 (2001), 1-13.

[18]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differetial Equations," Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[19]

B. Guo, H. Huang and M. Jiang, "Ginzburg-Landau Equation,'' Chinese ed, Science Press, Beijing, China, 2002.

[1]

Boling Guo, Bixiang Wang. Gevrey regularity and approximate inertial manifolds for the derivative Ginzburg-Landau equation in two spatial dimensions. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 455-466. doi: 10.3934/dcds.1996.2.455

[2]

Bixiang Wang, Shouhong Wang. Gevrey class regularity for the solutions of the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 507-522. doi: 10.3934/dcds.1998.4.507

[3]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[4]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[5]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[6]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[7]

Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575

[8]

Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109

[9]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[10]

Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 835-851. doi: 10.3934/dcdss.2020048

[11]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

[12]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[13]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[14]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[15]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[16]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[17]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[18]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[19]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2021-2038. doi: 10.3934/cpaa.2021056

[20]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]