-
Previous Article
Existence of positive steady states for a predator-prey model with diffusion
- CPAA Home
- This Issue
-
Next Article
Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves
The Fractional Ginzburg-Landau equation with distributional initial data
1. | Department of Mathematics, Jinan University, Guangzhou 510632, China |
2. | Department of Mathematics, Shenzhen University, Shenzhen 518060, China |
References:
[1] |
G. Zaslavsky, "Hamiltonian Chaos and Fractional Dynamics,", Oxford University Press, (2005). Google Scholar |
[2] |
V. Tarasov, "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media,'', Springer-Verlag, (2011). Google Scholar |
[3] |
G. Wilk and Z. Wlodarczyk, Do we observe Levy flights in cosmic rays?, Nucl. Phys., B75A (1999), 191. Google Scholar |
[4] |
M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339.
doi: 10.1063/1.1769611. |
[5] |
G. Zaslavsky and A. Edelman, Fractional kinetics: from pseudochaotic dynamics to Maxwell's demon,, Physica D., 193 (2004), 128.
doi: 10.1016/j.physd.2004.01.014. |
[6] |
F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes,, J. Comput. Appl. Math., 118 (2000), 283.
doi: 10.1016/S0377-0427(00)00294-6. |
[7] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach,, Phys. Rep., 339 (2000), 1.
doi: 10.1016/S0370-1573(00)00070-3. |
[8] |
H. Weitzner and G. Zaslavdky, Some applications of fractional derivatives,, Commun. Nonlinear Sci. Numer. Simul., (2003), 273.
doi: 10.1016/S1007-5704(03)00049-2. |
[9] |
V. Tarasov and G. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction,, Chaos., 16 (2006).
doi: 10.1063/1.2197167. |
[10] |
Y. Nec, A. Nepomnyashchy and A. Golovin, Oscillatory instability in super-diffusive reaction-diffusion systems: Fractional amplitude and phase diffusion equations,, Phys. Rev. E., (2008). Google Scholar |
[11] |
V. Tarasov and G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media,, Physica A, (2005), 249.
doi: 10.1016/j.physa.2005.02.047. |
[12] |
A. Milovanov and J. Rasmussen, Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media,, Phys. Lett. A., (2005), 75.
doi: 10.1016/j.physleta.2005.01.047. |
[13] |
V. Tarasov, Psi-series solution of fractional Ginzburg-Landau equation,, J. Phys. A: Math. Gen., 39 (2006), 8395. Google Scholar |
[14] |
J. Li and L. Xia, Well-posedness of fractional Ginzburg-Landau equation in sobolev spaces,, Appl. Anal., ().
doi: 10.1080/00036811.2011.649733. |
[15] |
J. Wu, Well-posedness of a semi-linear heat equation with weak initial data,, J. Fourier. Anal. Appl., 4 (1998), 629.
doi: 10.1007/BF02498228. |
[16] |
T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data,, Int. Math. Res. Not., 10 (1994), 435.
doi: 10.1155/S1073792894000474. |
[17] |
J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data,, Elect. J. Differ. Equ., 2001 (2001), 1. Google Scholar |
[18] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differetial Equations,", Springer-Verlag, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[19] |
B. Guo, H. Huang and M. Jiang, "Ginzburg-Landau Equation,'', Chinese ed, (2002). Google Scholar |
show all references
References:
[1] |
G. Zaslavsky, "Hamiltonian Chaos and Fractional Dynamics,", Oxford University Press, (2005). Google Scholar |
[2] |
V. Tarasov, "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media,'', Springer-Verlag, (2011). Google Scholar |
[3] |
G. Wilk and Z. Wlodarczyk, Do we observe Levy flights in cosmic rays?, Nucl. Phys., B75A (1999), 191. Google Scholar |
[4] |
M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339.
doi: 10.1063/1.1769611. |
[5] |
G. Zaslavsky and A. Edelman, Fractional kinetics: from pseudochaotic dynamics to Maxwell's demon,, Physica D., 193 (2004), 128.
doi: 10.1016/j.physd.2004.01.014. |
[6] |
F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes,, J. Comput. Appl. Math., 118 (2000), 283.
doi: 10.1016/S0377-0427(00)00294-6. |
[7] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach,, Phys. Rep., 339 (2000), 1.
doi: 10.1016/S0370-1573(00)00070-3. |
[8] |
H. Weitzner and G. Zaslavdky, Some applications of fractional derivatives,, Commun. Nonlinear Sci. Numer. Simul., (2003), 273.
doi: 10.1016/S1007-5704(03)00049-2. |
[9] |
V. Tarasov and G. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction,, Chaos., 16 (2006).
doi: 10.1063/1.2197167. |
[10] |
Y. Nec, A. Nepomnyashchy and A. Golovin, Oscillatory instability in super-diffusive reaction-diffusion systems: Fractional amplitude and phase diffusion equations,, Phys. Rev. E., (2008). Google Scholar |
[11] |
V. Tarasov and G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media,, Physica A, (2005), 249.
doi: 10.1016/j.physa.2005.02.047. |
[12] |
A. Milovanov and J. Rasmussen, Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media,, Phys. Lett. A., (2005), 75.
doi: 10.1016/j.physleta.2005.01.047. |
[13] |
V. Tarasov, Psi-series solution of fractional Ginzburg-Landau equation,, J. Phys. A: Math. Gen., 39 (2006), 8395. Google Scholar |
[14] |
J. Li and L. Xia, Well-posedness of fractional Ginzburg-Landau equation in sobolev spaces,, Appl. Anal., ().
doi: 10.1080/00036811.2011.649733. |
[15] |
J. Wu, Well-posedness of a semi-linear heat equation with weak initial data,, J. Fourier. Anal. Appl., 4 (1998), 629.
doi: 10.1007/BF02498228. |
[16] |
T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data,, Int. Math. Res. Not., 10 (1994), 435.
doi: 10.1155/S1073792894000474. |
[17] |
J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data,, Elect. J. Differ. Equ., 2001 (2001), 1. Google Scholar |
[18] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differetial Equations,", Springer-Verlag, (1983).
doi: 10.1007/978-1-4612-5561-1. |
[19] |
B. Guo, H. Huang and M. Jiang, "Ginzburg-Landau Equation,'', Chinese ed, (2002). Google Scholar |
[1] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[2] |
Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361 |
[3] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[4] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[5] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[6] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[7] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[8] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[9] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[10] |
Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 |
[11] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[12] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[13] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[14] |
Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289 |
[15] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[16] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[17] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[18] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[19] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[20] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]