• Previous Article
    Existence of positive steady states for a predator-prey model with diffusion
  • CPAA Home
  • This Issue
  • Next Article
    Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves
September  2013, 12(5): 2173-2187. doi: 10.3934/cpaa.2013.12.2173

The Fractional Ginzburg-Landau equation with distributional initial data

1. 

Department of Mathematics, Jinan University, Guangzhou 510632, China

2. 

Department of Mathematics, Shenzhen University, Shenzhen 518060, China

Received  June 2012 Revised  October 2012 Published  January 2013

The paper is concerned with real fractional Ginzburg-Landau equation. Existence and uniqueness of local and global mild solution with distributional initial data are obtained by contraction mapping principle and carefully choosing the working space, and Gevrey regularity of mild solution for flat torus case is discussed.
Citation: Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173
References:
[1]

G. Zaslavsky, "Hamiltonian Chaos and Fractional Dynamics,", Oxford University Press, (2005).   Google Scholar

[2]

V. Tarasov, "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media,'', Springer-Verlag, (2011).   Google Scholar

[3]

G. Wilk and Z. Wlodarczyk, Do we observe Levy flights in cosmic rays?, Nucl. Phys., B75A (1999), 191.   Google Scholar

[4]

M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339.  doi: 10.1063/1.1769611.  Google Scholar

[5]

G. Zaslavsky and A. Edelman, Fractional kinetics: from pseudochaotic dynamics to Maxwell's demon,, Physica D., 193 (2004), 128.  doi: 10.1016/j.physd.2004.01.014.  Google Scholar

[6]

F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes,, J. Comput. Appl. Math., 118 (2000), 283.  doi: 10.1016/S0377-0427(00)00294-6.  Google Scholar

[7]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[8]

H. Weitzner and G. Zaslavdky, Some applications of fractional derivatives,, Commun. Nonlinear Sci. Numer. Simul., (2003), 273.  doi: 10.1016/S1007-5704(03)00049-2.  Google Scholar

[9]

V. Tarasov and G. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction,, Chaos., 16 (2006).  doi: 10.1063/1.2197167.  Google Scholar

[10]

Y. Nec, A. Nepomnyashchy and A. Golovin, Oscillatory instability in super-diffusive reaction-diffusion systems: Fractional amplitude and phase diffusion equations,, Phys. Rev. E., (2008).   Google Scholar

[11]

V. Tarasov and G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media,, Physica A, (2005), 249.  doi: 10.1016/j.physa.2005.02.047.  Google Scholar

[12]

A. Milovanov and J. Rasmussen, Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media,, Phys. Lett. A., (2005), 75.  doi: 10.1016/j.physleta.2005.01.047.  Google Scholar

[13]

V. Tarasov, Psi-series solution of fractional Ginzburg-Landau equation,, J. Phys. A: Math. Gen., 39 (2006), 8395.   Google Scholar

[14]

J. Li and L. Xia, Well-posedness of fractional Ginzburg-Landau equation in sobolev spaces,, Appl. Anal., ().  doi: 10.1080/00036811.2011.649733.  Google Scholar

[15]

J. Wu, Well-posedness of a semi-linear heat equation with weak initial data,, J. Fourier. Anal. Appl., 4 (1998), 629.  doi: 10.1007/BF02498228.  Google Scholar

[16]

T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data,, Int. Math. Res. Not., 10 (1994), 435.  doi: 10.1155/S1073792894000474.  Google Scholar

[17]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data,, Elect. J. Differ. Equ., 2001 (2001), 1.   Google Scholar

[18]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differetial Equations,", Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[19]

B. Guo, H. Huang and M. Jiang, "Ginzburg-Landau Equation,'', Chinese ed, (2002).   Google Scholar

show all references

References:
[1]

G. Zaslavsky, "Hamiltonian Chaos and Fractional Dynamics,", Oxford University Press, (2005).   Google Scholar

[2]

V. Tarasov, "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media,'', Springer-Verlag, (2011).   Google Scholar

[3]

G. Wilk and Z. Wlodarczyk, Do we observe Levy flights in cosmic rays?, Nucl. Phys., B75A (1999), 191.   Google Scholar

[4]

M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339.  doi: 10.1063/1.1769611.  Google Scholar

[5]

G. Zaslavsky and A. Edelman, Fractional kinetics: from pseudochaotic dynamics to Maxwell's demon,, Physica D., 193 (2004), 128.  doi: 10.1016/j.physd.2004.01.014.  Google Scholar

[6]

F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes,, J. Comput. Appl. Math., 118 (2000), 283.  doi: 10.1016/S0377-0427(00)00294-6.  Google Scholar

[7]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[8]

H. Weitzner and G. Zaslavdky, Some applications of fractional derivatives,, Commun. Nonlinear Sci. Numer. Simul., (2003), 273.  doi: 10.1016/S1007-5704(03)00049-2.  Google Scholar

[9]

V. Tarasov and G. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction,, Chaos., 16 (2006).  doi: 10.1063/1.2197167.  Google Scholar

[10]

Y. Nec, A. Nepomnyashchy and A. Golovin, Oscillatory instability in super-diffusive reaction-diffusion systems: Fractional amplitude and phase diffusion equations,, Phys. Rev. E., (2008).   Google Scholar

[11]

V. Tarasov and G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media,, Physica A, (2005), 249.  doi: 10.1016/j.physa.2005.02.047.  Google Scholar

[12]

A. Milovanov and J. Rasmussen, Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media,, Phys. Lett. A., (2005), 75.  doi: 10.1016/j.physleta.2005.01.047.  Google Scholar

[13]

V. Tarasov, Psi-series solution of fractional Ginzburg-Landau equation,, J. Phys. A: Math. Gen., 39 (2006), 8395.   Google Scholar

[14]

J. Li and L. Xia, Well-posedness of fractional Ginzburg-Landau equation in sobolev spaces,, Appl. Anal., ().  doi: 10.1080/00036811.2011.649733.  Google Scholar

[15]

J. Wu, Well-posedness of a semi-linear heat equation with weak initial data,, J. Fourier. Anal. Appl., 4 (1998), 629.  doi: 10.1007/BF02498228.  Google Scholar

[16]

T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data,, Int. Math. Res. Not., 10 (1994), 435.  doi: 10.1155/S1073792894000474.  Google Scholar

[17]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data,, Elect. J. Differ. Equ., 2001 (2001), 1.   Google Scholar

[18]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differetial Equations,", Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[19]

B. Guo, H. Huang and M. Jiang, "Ginzburg-Landau Equation,'', Chinese ed, (2002).   Google Scholar

[1]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[2]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[6]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[7]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[8]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[9]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[10]

Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $ p $-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034

[11]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[12]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[13]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[14]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[15]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[20]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]