• Previous Article
    Existence of positive steady states for a predator-prey model with diffusion
  • CPAA Home
  • This Issue
  • Next Article
    Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves
September  2013, 12(5): 2173-2187. doi: 10.3934/cpaa.2013.12.2173

The Fractional Ginzburg-Landau equation with distributional initial data

1. 

Department of Mathematics, Jinan University, Guangzhou 510632, China

2. 

Department of Mathematics, Shenzhen University, Shenzhen 518060, China

Received  June 2012 Revised  October 2012 Published  January 2013

The paper is concerned with real fractional Ginzburg-Landau equation. Existence and uniqueness of local and global mild solution with distributional initial data are obtained by contraction mapping principle and carefully choosing the working space, and Gevrey regularity of mild solution for flat torus case is discussed.
Citation: Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173
References:
[1]

G. Zaslavsky, "Hamiltonian Chaos and Fractional Dynamics,", Oxford University Press, (2005).   Google Scholar

[2]

V. Tarasov, "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media,'', Springer-Verlag, (2011).   Google Scholar

[3]

G. Wilk and Z. Wlodarczyk, Do we observe Levy flights in cosmic rays?, Nucl. Phys., B75A (1999), 191.   Google Scholar

[4]

M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339.  doi: 10.1063/1.1769611.  Google Scholar

[5]

G. Zaslavsky and A. Edelman, Fractional kinetics: from pseudochaotic dynamics to Maxwell's demon,, Physica D., 193 (2004), 128.  doi: 10.1016/j.physd.2004.01.014.  Google Scholar

[6]

F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes,, J. Comput. Appl. Math., 118 (2000), 283.  doi: 10.1016/S0377-0427(00)00294-6.  Google Scholar

[7]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[8]

H. Weitzner and G. Zaslavdky, Some applications of fractional derivatives,, Commun. Nonlinear Sci. Numer. Simul., (2003), 273.  doi: 10.1016/S1007-5704(03)00049-2.  Google Scholar

[9]

V. Tarasov and G. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction,, Chaos., 16 (2006).  doi: 10.1063/1.2197167.  Google Scholar

[10]

Y. Nec, A. Nepomnyashchy and A. Golovin, Oscillatory instability in super-diffusive reaction-diffusion systems: Fractional amplitude and phase diffusion equations,, Phys. Rev. E., (2008).   Google Scholar

[11]

V. Tarasov and G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media,, Physica A, (2005), 249.  doi: 10.1016/j.physa.2005.02.047.  Google Scholar

[12]

A. Milovanov and J. Rasmussen, Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media,, Phys. Lett. A., (2005), 75.  doi: 10.1016/j.physleta.2005.01.047.  Google Scholar

[13]

V. Tarasov, Psi-series solution of fractional Ginzburg-Landau equation,, J. Phys. A: Math. Gen., 39 (2006), 8395.   Google Scholar

[14]

J. Li and L. Xia, Well-posedness of fractional Ginzburg-Landau equation in sobolev spaces,, Appl. Anal., ().  doi: 10.1080/00036811.2011.649733.  Google Scholar

[15]

J. Wu, Well-posedness of a semi-linear heat equation with weak initial data,, J. Fourier. Anal. Appl., 4 (1998), 629.  doi: 10.1007/BF02498228.  Google Scholar

[16]

T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data,, Int. Math. Res. Not., 10 (1994), 435.  doi: 10.1155/S1073792894000474.  Google Scholar

[17]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data,, Elect. J. Differ. Equ., 2001 (2001), 1.   Google Scholar

[18]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differetial Equations,", Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[19]

B. Guo, H. Huang and M. Jiang, "Ginzburg-Landau Equation,'', Chinese ed, (2002).   Google Scholar

show all references

References:
[1]

G. Zaslavsky, "Hamiltonian Chaos and Fractional Dynamics,", Oxford University Press, (2005).   Google Scholar

[2]

V. Tarasov, "Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media,'', Springer-Verlag, (2011).   Google Scholar

[3]

G. Wilk and Z. Wlodarczyk, Do we observe Levy flights in cosmic rays?, Nucl. Phys., B75A (1999), 191.   Google Scholar

[4]

M. Naber, Time fractional Schrödinger equation,, J. Math. Phys., 45 (2004), 3339.  doi: 10.1063/1.1769611.  Google Scholar

[5]

G. Zaslavsky and A. Edelman, Fractional kinetics: from pseudochaotic dynamics to Maxwell's demon,, Physica D., 193 (2004), 128.  doi: 10.1016/j.physd.2004.01.014.  Google Scholar

[6]

F. Mainardi and R. Gorenflo, On Mittag-Leffler-type functions in fractional evolution processes,, J. Comput. Appl. Math., 118 (2000), 283.  doi: 10.1016/S0377-0427(00)00294-6.  Google Scholar

[7]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[8]

H. Weitzner and G. Zaslavdky, Some applications of fractional derivatives,, Commun. Nonlinear Sci. Numer. Simul., (2003), 273.  doi: 10.1016/S1007-5704(03)00049-2.  Google Scholar

[9]

V. Tarasov and G. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction,, Chaos., 16 (2006).  doi: 10.1063/1.2197167.  Google Scholar

[10]

Y. Nec, A. Nepomnyashchy and A. Golovin, Oscillatory instability in super-diffusive reaction-diffusion systems: Fractional amplitude and phase diffusion equations,, Phys. Rev. E., (2008).   Google Scholar

[11]

V. Tarasov and G. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media,, Physica A, (2005), 249.  doi: 10.1016/j.physa.2005.02.047.  Google Scholar

[12]

A. Milovanov and J. Rasmussen, Fractional generalization of the Ginzburg-Landau equation: An unconventional approach to critical phenomena in complex media,, Phys. Lett. A., (2005), 75.  doi: 10.1016/j.physleta.2005.01.047.  Google Scholar

[13]

V. Tarasov, Psi-series solution of fractional Ginzburg-Landau equation,, J. Phys. A: Math. Gen., 39 (2006), 8395.   Google Scholar

[14]

J. Li and L. Xia, Well-posedness of fractional Ginzburg-Landau equation in sobolev spaces,, Appl. Anal., ().  doi: 10.1080/00036811.2011.649733.  Google Scholar

[15]

J. Wu, Well-posedness of a semi-linear heat equation with weak initial data,, J. Fourier. Anal. Appl., 4 (1998), 629.  doi: 10.1007/BF02498228.  Google Scholar

[16]

T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data,, Int. Math. Res. Not., 10 (1994), 435.  doi: 10.1155/S1073792894000474.  Google Scholar

[17]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data,, Elect. J. Differ. Equ., 2001 (2001), 1.   Google Scholar

[18]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differetial Equations,", Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[19]

B. Guo, H. Huang and M. Jiang, "Ginzburg-Landau Equation,'', Chinese ed, (2002).   Google Scholar

[1]

Boling Guo, Bixiang Wang. Gevrey regularity and approximate inertial manifolds for the derivative Ginzburg-Landau equation in two spatial dimensions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 455-466. doi: 10.3934/dcds.1996.2.455

[2]

Bixiang Wang, Shouhong Wang. Gevrey class regularity for the solutions of the Ginzburg-Landau equations of superconductivity. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 507-522. doi: 10.3934/dcds.1998.4.507

[3]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[4]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[5]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[6]

Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575

[7]

Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109

[8]

Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 835-851. doi: 10.3934/dcdss.2020048

[9]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[10]

Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097

[11]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[12]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[13]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[14]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[15]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[16]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[17]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[18]

Justin Forlano. Almost sure global well posedness for the BBM equation with infinite $ L^{2} $ initial data. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 267-318. doi: 10.3934/dcds.2020011

[19]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure & Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

[20]

Xin Zhong. Global well-posedness to the cauchy problem of two-dimensional density-dependent boussinesq equations with large initial data and vacuum. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6713-6745. doi: 10.3934/dcds.2019292

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]