September  2013, 12(5): 2203-2211. doi: 10.3934/cpaa.2013.12.2203

One-dimensional symmetry for semilinear equations with unbounded drift

1. 

Dip. di Matematica Pura e Applicata, Univ. di Padova, via Trieste 63, 35131 Padova

2. 

Università di Padova, Via Trieste 63, 35121 Padova

3. 

Dipartimento di Matematica, Università di Padova, Via Trieste 63, Padova, Italy

Received  June 2012 Revised  October 2012 Published  January 2013

We consider semilinear equations with unbounded drift in the whole of $R^n$ and we show that monotone solutions with finite energy are one-dimensional.
Citation: Annalisa Cesaroni, Matteo Novaga, Andrea Pinamonti. One-dimensional symmetry for semilinear equations with unbounded drift. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2203-2211. doi: 10.3934/cpaa.2013.12.2203
References:
[1]

G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property,, Acta Appl. Math., 65 (2001), 9.  doi: 10.1023/A:1010602715526.  Google Scholar

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi,, J. Amer. Math. Soc., 13 (2000), 725.  doi: 10.1090/S0894-0347-00-00345-3.  Google Scholar

[3]

H. Berestycki, L. A. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1998), 69.  doi: item?id=ASNSP_1997_4_25_1-2_69_0.  Google Scholar

[4]

H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations,, Duke Math. J., 103 (2000), 375.  doi: 10.1215/S0012-7094-00-10331-6.  Google Scholar

[5]

A. Bonnet and F. Hamel, Existence of non-planar solutions of a simple model of premixed Bunsen flames,, SIAM J. Math. Anal., 31 (1999), 80.  doi: 10.1137/S0036141097316391.  Google Scholar

[6]

A. Cesaroni, M. Novaga and E. Valdinoci, A simmetry result for the Ornstein-Uhlenbech operator,, to appear on Discrete Contin. Dyn. Syst. A, ().   Google Scholar

[7]

C. Cowan and M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights,, Proc. Amer. Math. Soc., 140 (2012), 2003.  doi: 10.1090/S0002-9939-2011-11351-0.  Google Scholar

[8]

G. Da Prato and A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition,, J. Differential Equations, 198 (2004), 35.  doi: 10.1016/j.jde.2003.10.025.  Google Scholar

[9]

E. De Giorgi, Convergence problems for functionals and operators,, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, (1979), 131.   Google Scholar

[10]

M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher,, Ann. of Math., 174 (2011), 1485.  doi: 10.4007/annals.2011.174.3.3.  Google Scholar

[11]

L. Dupaigne and A. Farina, Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities,, Nonlinear Anal., 70 (2009), 2882.  doi: 10.1016/j.na.2008.12.017.  Google Scholar

[12]

L. Dupaigne and A. Farina, Stable solutions of $-\Delta u=f(u)$ in $R^N$,, J. Eur. Math. Soc., 12 (2010), 855.  doi: 10.4171/JEMS/217.  Google Scholar

[13]

A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 741.  doi: 10.2422/2036-2145.2008.4.06.  Google Scholar

[14]

A. Farina, Y. Sire and E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds,, to appear in J. Geom. Anal., ().  doi: 10.1007/s12220-011-9278-9.  Google Scholar

[15]

A. Farina, Y. Sire and E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds with Euclidean coverings,, Proc. Amer. Math. Soc., 140 (2012), 927.  doi: 10.1090/S0002-9939-2011-11241-3.  Google Scholar

[16]

M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems,, to appear in Calc. Var. Partial Differential Equations., ().  doi: 10.1007/s00526-012-0536-x.  Google Scholar

[17]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems,, Math. Ann., 311 (1998), 481.  doi: 10.1007/s002080050196.  Google Scholar

[18]

F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in $R^N$ with conical-shaped level sets,, Comm. Partial Differential Equations, 25 (2000), 769.  doi: 10.1080/03605300008821532.  Google Scholar

[19]

A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $R^n$,, Studia Mathematica, 128 (1998), 171.   Google Scholar

[20]

M. Lucia, C. B. Muratov and M. Novaga, Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium,, Comm. Pure Appl. Math., 57 (2004), 616.  doi: 10.1002/cpa.20014.  Google Scholar

[21]

M. Lucia, C. B. Muratov and M. Novaga, Existence of traveling wave solutions for Ginzburg-Landau-type problems in infinite cylinders,, Arch. Ration. Mech. Anal., 188 (2008), 475.  doi: 10.1007/s00205-007-0097-x.  Google Scholar

[22]

O. Savin, Regularity of flat level sets in phase transitions,, Ann. of Math., 169 (2009), 41.  doi: 10.4007/annals.2009.169.41.  Google Scholar

[23]

A. Pinamonti and E. Valdinoci, A geometric inequality for stable solutions of semilinear elliptic problems in the Engel group,, Ann. Acad. Sci. Fenn. Math., 37 (2012), 357.  doi: 10.5186/aasfm.2012.3733.  Google Scholar

[24]

J. M. Roquejoffre, Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders,, Ann. Inst. H. Poincar\`e Anal. Non Lin\`eaire, 14 (1997), 499.  doi: 10.1016/S0294-1449(97)80137-0.  Google Scholar

[25]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.  doi: 10.1007/s002050050081.  Google Scholar

[26]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.  doi: 10.1515/crll.1998.100.  Google Scholar

[27]

J. M. Vega, Travelling wavefronts of reaction-diffusion equations in cylindrical domains,, Comm. Partial Differential Equations, 18 (1993), 505.  doi: 10.1080/03605309308820939.  Google Scholar

show all references

References:
[1]

G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property,, Acta Appl. Math., 65 (2001), 9.  doi: 10.1023/A:1010602715526.  Google Scholar

[2]

L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi,, J. Amer. Math. Soc., 13 (2000), 725.  doi: 10.1090/S0894-0347-00-00345-3.  Google Scholar

[3]

H. Berestycki, L. A. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1998), 69.  doi: item?id=ASNSP_1997_4_25_1-2_69_0.  Google Scholar

[4]

H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations,, Duke Math. J., 103 (2000), 375.  doi: 10.1215/S0012-7094-00-10331-6.  Google Scholar

[5]

A. Bonnet and F. Hamel, Existence of non-planar solutions of a simple model of premixed Bunsen flames,, SIAM J. Math. Anal., 31 (1999), 80.  doi: 10.1137/S0036141097316391.  Google Scholar

[6]

A. Cesaroni, M. Novaga and E. Valdinoci, A simmetry result for the Ornstein-Uhlenbech operator,, to appear on Discrete Contin. Dyn. Syst. A, ().   Google Scholar

[7]

C. Cowan and M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights,, Proc. Amer. Math. Soc., 140 (2012), 2003.  doi: 10.1090/S0002-9939-2011-11351-0.  Google Scholar

[8]

G. Da Prato and A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition,, J. Differential Equations, 198 (2004), 35.  doi: 10.1016/j.jde.2003.10.025.  Google Scholar

[9]

E. De Giorgi, Convergence problems for functionals and operators,, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, (1979), 131.   Google Scholar

[10]

M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher,, Ann. of Math., 174 (2011), 1485.  doi: 10.4007/annals.2011.174.3.3.  Google Scholar

[11]

L. Dupaigne and A. Farina, Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities,, Nonlinear Anal., 70 (2009), 2882.  doi: 10.1016/j.na.2008.12.017.  Google Scholar

[12]

L. Dupaigne and A. Farina, Stable solutions of $-\Delta u=f(u)$ in $R^N$,, J. Eur. Math. Soc., 12 (2010), 855.  doi: 10.4171/JEMS/217.  Google Scholar

[13]

A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 741.  doi: 10.2422/2036-2145.2008.4.06.  Google Scholar

[14]

A. Farina, Y. Sire and E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds,, to appear in J. Geom. Anal., ().  doi: 10.1007/s12220-011-9278-9.  Google Scholar

[15]

A. Farina, Y. Sire and E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds with Euclidean coverings,, Proc. Amer. Math. Soc., 140 (2012), 927.  doi: 10.1090/S0002-9939-2011-11241-3.  Google Scholar

[16]

M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems,, to appear in Calc. Var. Partial Differential Equations., ().  doi: 10.1007/s00526-012-0536-x.  Google Scholar

[17]

N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems,, Math. Ann., 311 (1998), 481.  doi: 10.1007/s002080050196.  Google Scholar

[18]

F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in $R^N$ with conical-shaped level sets,, Comm. Partial Differential Equations, 25 (2000), 769.  doi: 10.1080/03605300008821532.  Google Scholar

[19]

A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $R^n$,, Studia Mathematica, 128 (1998), 171.   Google Scholar

[20]

M. Lucia, C. B. Muratov and M. Novaga, Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium,, Comm. Pure Appl. Math., 57 (2004), 616.  doi: 10.1002/cpa.20014.  Google Scholar

[21]

M. Lucia, C. B. Muratov and M. Novaga, Existence of traveling wave solutions for Ginzburg-Landau-type problems in infinite cylinders,, Arch. Ration. Mech. Anal., 188 (2008), 475.  doi: 10.1007/s00205-007-0097-x.  Google Scholar

[22]

O. Savin, Regularity of flat level sets in phase transitions,, Ann. of Math., 169 (2009), 41.  doi: 10.4007/annals.2009.169.41.  Google Scholar

[23]

A. Pinamonti and E. Valdinoci, A geometric inequality for stable solutions of semilinear elliptic problems in the Engel group,, Ann. Acad. Sci. Fenn. Math., 37 (2012), 357.  doi: 10.5186/aasfm.2012.3733.  Google Scholar

[24]

J. M. Roquejoffre, Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders,, Ann. Inst. H. Poincar\`e Anal. Non Lin\`eaire, 14 (1997), 499.  doi: 10.1016/S0294-1449(97)80137-0.  Google Scholar

[25]

P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains,, Arch. Rational Mech. Anal., 141 (1998), 375.  doi: 10.1007/s002050050081.  Google Scholar

[26]

P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces,, J. Reine Angew. Math., 503 (1998), 63.  doi: 10.1515/crll.1998.100.  Google Scholar

[27]

J. M. Vega, Travelling wavefronts of reaction-diffusion equations in cylindrical domains,, Comm. Partial Differential Equations, 18 (1993), 505.  doi: 10.1080/03605309308820939.  Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[3]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[4]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[5]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[8]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[10]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[11]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[12]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[13]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[17]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[18]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[19]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[20]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (5)

[Back to Top]