-
Previous Article
Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation
- CPAA Home
- This Issue
-
Next Article
Existence of positive steady states for a predator-prey model with diffusion
One-dimensional symmetry for semilinear equations with unbounded drift
1. | Dip. di Matematica Pura e Applicata, Univ. di Padova, via Trieste 63, 35131 Padova |
2. | Università di Padova, Via Trieste 63, 35121 Padova |
3. | Dipartimento di Matematica, Università di Padova, Via Trieste 63, Padova, Italy |
References:
[1] |
G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.
doi: 10.1023/A:1010602715526. |
[2] |
L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.
doi: 10.1090/S0894-0347-00-00345-3. |
[3] |
H. Berestycki, L. A. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1998), 69-94.
doi: item?id=ASNSP_1997_4_25_1-2_69_0. |
[4] |
H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., 103 (2000), 375-396.
doi: 10.1215/S0012-7094-00-10331-6. |
[5] |
A. Bonnet and F. Hamel, Existence of non-planar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118.
doi: 10.1137/S0036141097316391. |
[6] |
A. Cesaroni, M. Novaga and E. Valdinoci, A simmetry result for the Ornstein-Uhlenbech operator,, to appear on Discrete Contin. Dyn. Syst. A, ().
|
[7] |
C. Cowan and M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights, Proc. Amer. Math. Soc., 140 (2012), 2003-2012.
doi: 10.1090/S0002-9939-2011-11351-0. |
[8] |
G. Da Prato and A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition, J. Differential Equations, 198 (2004), 35-52.
doi: 10.1016/j.jde.2003.10.025. |
[9] |
E. De Giorgi, Convergence problems for functionals and operators, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 131-188, Pitagora, Bologna (1979). |
[10] |
M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher, Ann. of Math., 174 (2011), 1485-1569.
doi: 10.4007/annals.2011.174.3.3. |
[11] |
L. Dupaigne and A. Farina, Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities, Nonlinear Anal., 70 (2009), 2882-2888.
doi: 10.1016/j.na.2008.12.017. |
[12] |
L. Dupaigne and A. Farina, Stable solutions of $-\Delta u=f(u)$ in $R^N$, J. Eur. Math. Soc., 12 (2010), 855-882.
doi: 10.4171/JEMS/217. |
[13] |
A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 741-791.
doi: 10.2422/2036-2145.2008.4.06. |
[14] |
A. Farina, Y. Sire and E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds,, to appear in J. Geom. Anal., ().
doi: 10.1007/s12220-011-9278-9. |
[15] |
A. Farina, Y. Sire and E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds with Euclidean coverings, Proc. Amer. Math. Soc., 140 (2012), 927-930.
doi: 10.1090/S0002-9939-2011-11241-3. |
[16] |
M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems,, to appear in Calc. Var. Partial Differential Equations., ().
doi: 10.1007/s00526-012-0536-x. |
[17] |
N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.
doi: 10.1007/s002080050196. |
[18] |
F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in $R^N$ with conical-shaped level sets, Comm. Partial Differential Equations, 25 (2000), 769-819.
doi: 10.1080/03605300008821532. |
[19] |
A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $R^n$, Studia Mathematica, 128 (1998), 171-198. |
[20] |
M. Lucia, C. B. Muratov and M. Novaga, Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium, Comm. Pure Appl. Math., 57 (2004), 616-636.
doi: 10.1002/cpa.20014. |
[21] |
M. Lucia, C. B. Muratov and M. Novaga, Existence of traveling wave solutions for Ginzburg-Landau-type problems in infinite cylinders, Arch. Ration. Mech. Anal., 188 (2008), 475-508.
doi: 10.1007/s00205-007-0097-x. |
[22] |
O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., 169 (2009), 41-78.
doi: 10.4007/annals.2009.169.41. |
[23] |
A. Pinamonti and E. Valdinoci, A geometric inequality for stable solutions of semilinear elliptic problems in the Engel group, Ann. Acad. Sci. Fenn. Math., 37 (2012), 357-373.
doi: 10.5186/aasfm.2012.3733. |
[24] |
J. M. Roquejoffre, Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders, Ann. Inst. H. Poincarè Anal. Non Linèaire, 14 (1997), 499-552.
doi: 10.1016/S0294-1449(97)80137-0. |
[25] |
P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.
doi: 10.1007/s002050050081. |
[26] |
P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85.
doi: 10.1515/crll.1998.100. |
[27] |
J. M. Vega, Travelling wavefronts of reaction-diffusion equations in cylindrical domains, Comm. Partial Differential Equations, 18 (1993), 505-531.
doi: 10.1080/03605309308820939. |
show all references
References:
[1] |
G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.
doi: 10.1023/A:1010602715526. |
[2] |
L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $R^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.
doi: 10.1090/S0894-0347-00-00345-3. |
[3] |
H. Berestycki, L. A. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (1998), 69-94.
doi: item?id=ASNSP_1997_4_25_1-2_69_0. |
[4] |
H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., 103 (2000), 375-396.
doi: 10.1215/S0012-7094-00-10331-6. |
[5] |
A. Bonnet and F. Hamel, Existence of non-planar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999), 80-118.
doi: 10.1137/S0036141097316391. |
[6] |
A. Cesaroni, M. Novaga and E. Valdinoci, A simmetry result for the Ornstein-Uhlenbech operator,, to appear on Discrete Contin. Dyn. Syst. A, ().
|
[7] |
C. Cowan and M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights, Proc. Amer. Math. Soc., 140 (2012), 2003-2012.
doi: 10.1090/S0002-9939-2011-11351-0. |
[8] |
G. Da Prato and A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition, J. Differential Equations, 198 (2004), 35-52.
doi: 10.1016/j.jde.2003.10.025. |
[9] |
E. De Giorgi, Convergence problems for functionals and operators, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 131-188, Pitagora, Bologna (1979). |
[10] |
M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher, Ann. of Math., 174 (2011), 1485-1569.
doi: 10.4007/annals.2011.174.3.3. |
[11] |
L. Dupaigne and A. Farina, Liouville theorems for stable solutions of semilinear elliptic equations with convex nonlinearities, Nonlinear Anal., 70 (2009), 2882-2888.
doi: 10.1016/j.na.2008.12.017. |
[12] |
L. Dupaigne and A. Farina, Stable solutions of $-\Delta u=f(u)$ in $R^N$, J. Eur. Math. Soc., 12 (2010), 855-882.
doi: 10.4171/JEMS/217. |
[13] |
A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (2008), 741-791.
doi: 10.2422/2036-2145.2008.4.06. |
[14] |
A. Farina, Y. Sire and E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds,, to appear in J. Geom. Anal., ().
doi: 10.1007/s12220-011-9278-9. |
[15] |
A. Farina, Y. Sire and E. Valdinoci, Stable solutions of elliptic equations on Riemannian manifolds with Euclidean coverings, Proc. Amer. Math. Soc., 140 (2012), 927-930.
doi: 10.1090/S0002-9939-2011-11241-3. |
[16] |
M. Fazly and N. Ghoussoub, De Giorgi type results for elliptic systems,, to appear in Calc. Var. Partial Differential Equations., ().
doi: 10.1007/s00526-012-0536-x. |
[17] |
N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.
doi: 10.1007/s002080050196. |
[18] |
F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in $R^N$ with conical-shaped level sets, Comm. Partial Differential Equations, 25 (2000), 769-819.
doi: 10.1080/03605300008821532. |
[19] |
A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $R^n$, Studia Mathematica, 128 (1998), 171-198. |
[20] |
M. Lucia, C. B. Muratov and M. Novaga, Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium, Comm. Pure Appl. Math., 57 (2004), 616-636.
doi: 10.1002/cpa.20014. |
[21] |
M. Lucia, C. B. Muratov and M. Novaga, Existence of traveling wave solutions for Ginzburg-Landau-type problems in infinite cylinders, Arch. Ration. Mech. Anal., 188 (2008), 475-508.
doi: 10.1007/s00205-007-0097-x. |
[22] |
O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math., 169 (2009), 41-78.
doi: 10.4007/annals.2009.169.41. |
[23] |
A. Pinamonti and E. Valdinoci, A geometric inequality for stable solutions of semilinear elliptic problems in the Engel group, Ann. Acad. Sci. Fenn. Math., 37 (2012), 357-373.
doi: 10.5186/aasfm.2012.3733. |
[24] |
J. M. Roquejoffre, Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations in cylinders, Ann. Inst. H. Poincarè Anal. Non Linèaire, 14 (1997), 499-552.
doi: 10.1016/S0294-1449(97)80137-0. |
[25] |
P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.
doi: 10.1007/s002050050081. |
[26] |
P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85.
doi: 10.1515/crll.1998.100. |
[27] |
J. M. Vega, Travelling wavefronts of reaction-diffusion equations in cylindrical domains, Comm. Partial Differential Equations, 18 (1993), 505-531.
doi: 10.1080/03605309308820939. |
[1] |
Antonio Avantaggiati, Paola Loreti. Hypercontractivity, Hopf-Lax type formulas, Ornstein-Uhlenbeck operators (II). Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 525-545. doi: 10.3934/dcdss.2009.2.525 |
[2] |
Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451 |
[3] |
Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1883-1898. doi: 10.3934/dcdss.2020148 |
[4] |
Alessia E. Kogoj. A Zaremba-type criterion for hypoelliptic degenerate Ornstein–Uhlenbeck operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3491-3494. doi: 10.3934/dcdss.2020112 |
[5] |
Foued Mtiri. Liouville type theorems for stable solutions of elliptic system involving the Grushin operator. Communications on Pure and Applied Analysis, 2022, 21 (2) : 541-553. doi: 10.3934/cpaa.2021187 |
[6] |
Francesco Esposito. Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 549-577. doi: 10.3934/dcds.2020022 |
[7] |
Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869 |
[8] |
Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871 |
[9] |
Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649 |
[10] |
Pavol Quittner, Philippe Souplet. Parabolic Liouville-type theorems via their elliptic counterparts. Conference Publications, 2011, 2011 (Special) : 1206-1213. doi: 10.3934/proc.2011.2011.1206 |
[11] |
Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure and Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049 |
[12] |
Sami Baraket, Soumaya Sâanouni, Nihed Trabelsi. Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type in some general case. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1013-1063. doi: 10.3934/dcds.2020069 |
[13] |
D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499 |
[14] |
Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142 |
[15] |
Samuel Herrmann, Nicolas Massin. Exit problem for Ornstein-Uhlenbeck processes: A random walk approach. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3199-3215. doi: 10.3934/dcdsb.2020058 |
[16] |
Mondher Damak, Brice Franke, Nejib Yaakoubi. Accelerating planar Ornstein-Uhlenbeck diffusion with suitable drift. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4093-4112. doi: 10.3934/dcds.2020173 |
[17] |
Kai Liu. Quadratic control problem of neutral Ornstein-Uhlenbeck processes with control delays. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1651-1661. doi: 10.3934/dcdsb.2013.18.1651 |
[18] |
Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation. Kinetic and Related Models, 2018, 11 (2) : 239-278. doi: 10.3934/krm.2018013 |
[19] |
Quoc Hung Phan. Optimal Liouville-type theorems for a parabolic system. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 399-409. doi: 10.3934/dcds.2015.35.399 |
[20] |
Phuong Le. Liouville theorems for an integral equation of Choquard type. Communications on Pure and Applied Analysis, 2020, 19 (2) : 771-783. doi: 10.3934/cpaa.2020036 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]