September  2013, 12(5): 2229-2266. doi: 10.3934/cpaa.2013.12.2229

Energy decay for Maxwell's equations with Ohm's law in partially cubic domains

1. 

Université d'Orléans, Laboratoire MAPMO, CNRS UMR 7349, Fédération Denis Poisson, FR CNRS 2964, Bâtiment de Mathématiques, B.P. 6759, 45067 Orléans Cedex 2, France

Received  January 2012 Revised  June 2012 Published  January 2013

We prove a polynomial energy decay for the Maxwell's equations with Ohm's law in partially cubic domains with trapped rays. We extend the results of polynomial decay for the scalar damped wave equation in partially rectangular or cubic domain. Our approach have some similitude with the construction of reflected gaussian beams.
Citation: Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2229-2266. doi: 10.3934/cpaa.2013.12.2229
References:
[1]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998), 823-864.

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065. doi: 10.1137/0330055.

[3]

P. Boissoles, "Problèmes mathématiques et numériques issus de l'imagerie par résonance magnétique nucléaire," Ph.D thesis, Université de Rennes 1, 2005.

[4]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 14 (2007), 35-47.

[5]

M. Cessenat, "Mathematical Method in Electromagnetism, Linear Theory and Applications," World Scientific, Singapore, 1996.

[6]

R. Dautray and J.-L. Lions, "Analyse mathématique et calcul numérique pour les sciences et les techniques, Volume 5, Spectre des opérateurs," Masson, Paris, 1988.

[7]

G. Duvaut and J.-L. Lions, "Les inéquations en mécanique et en physique," Dunod, Paris, 1972.

[8]

S. S. Krigman and C. E. Wayne, Boundary controllability of Maxwell's equations with nonzero conductivity inside a cube, I: Spectral controllability, J. Math. Anal. Appl., 329 (2007), 1375-1396. doi: 10.1016/j.jmaa.2006.06.101.

[9]

J.-L. Lions, "Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués I," Masson, Paris, 1988.

[10]

H. Nishiyama, Polynomial decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 16 (2009), 881-894.

[11]

K. D. Phung, Contrôle et stabilisation d'ondes électromagnétiques, ESAIM Control Optim. Calc. Var., 5 (2000), 87-137. doi: 10.1051/cocv:2000103.

[12]

K. D. Phung, Polynomial decay rate for the dissipative wave equation, J. Diff. Eq., 240 (2007), 92-124. doi: 10.1016/j.jde.2007.05.016.

[13]

J. Ralston, Gaussian beams and propagation of singularities, in "Studies in Partial Differential Equations" (eds. W. Littman), MAA studies in Mathematics, 23 (1982), 206-248.

[14]

W. Wei, H-M. Yin and J. Tang, An optimal control problem for microwave heating, Nonlinear Analysis, 75 (2012), 2024-2036. doi: 10.1016/j.na.2011.10.003.

[15]

R. Ziolkowski, Exact solutions of the wave equation with complex source locations, J. Math. Phys., 26 (1985), 861-863. doi: 10.1063/1.526579.

show all references

References:
[1]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998), 823-864.

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065. doi: 10.1137/0330055.

[3]

P. Boissoles, "Problèmes mathématiques et numériques issus de l'imagerie par résonance magnétique nucléaire," Ph.D thesis, Université de Rennes 1, 2005.

[4]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 14 (2007), 35-47.

[5]

M. Cessenat, "Mathematical Method in Electromagnetism, Linear Theory and Applications," World Scientific, Singapore, 1996.

[6]

R. Dautray and J.-L. Lions, "Analyse mathématique et calcul numérique pour les sciences et les techniques, Volume 5, Spectre des opérateurs," Masson, Paris, 1988.

[7]

G. Duvaut and J.-L. Lions, "Les inéquations en mécanique et en physique," Dunod, Paris, 1972.

[8]

S. S. Krigman and C. E. Wayne, Boundary controllability of Maxwell's equations with nonzero conductivity inside a cube, I: Spectral controllability, J. Math. Anal. Appl., 329 (2007), 1375-1396. doi: 10.1016/j.jmaa.2006.06.101.

[9]

J.-L. Lions, "Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués I," Masson, Paris, 1988.

[10]

H. Nishiyama, Polynomial decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 16 (2009), 881-894.

[11]

K. D. Phung, Contrôle et stabilisation d'ondes électromagnétiques, ESAIM Control Optim. Calc. Var., 5 (2000), 87-137. doi: 10.1051/cocv:2000103.

[12]

K. D. Phung, Polynomial decay rate for the dissipative wave equation, J. Diff. Eq., 240 (2007), 92-124. doi: 10.1016/j.jde.2007.05.016.

[13]

J. Ralston, Gaussian beams and propagation of singularities, in "Studies in Partial Differential Equations" (eds. W. Littman), MAA studies in Mathematics, 23 (1982), 206-248.

[14]

W. Wei, H-M. Yin and J. Tang, An optimal control problem for microwave heating, Nonlinear Analysis, 75 (2012), 2024-2036. doi: 10.1016/j.na.2011.10.003.

[15]

R. Ziolkowski, Exact solutions of the wave equation with complex source locations, J. Math. Phys., 26 (1985), 861-863. doi: 10.1063/1.526579.

[1]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[2]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[3]

Annalena Albicker, Roland Griesmaier. Monotonicity in inverse scattering for Maxwell's equations. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022032

[4]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[5]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[6]

Quyen Tran, Harbir Antil, Hugo Díaz. Optimal control of parameterized stationary Maxwell's system: Reduced basis, convergence analysis, and a posteriori error estimates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022003

[7]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181

[8]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[9]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[10]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[11]

Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051

[12]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems and Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[13]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

[14]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[15]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

[16]

Marco Cappiello, Fabio Nicola. Sharp decay estimates and smoothness for solutions to nonlocal semilinear equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1869-1880. doi: 10.3934/dcds.2016.36.1869

[17]

Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69

[18]

Cristina Brändle, Arturo De Pablo. Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1161-1178. doi: 10.3934/cpaa.2018056

[19]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]