September  2013, 12(5): 2229-2266. doi: 10.3934/cpaa.2013.12.2229

Energy decay for Maxwell's equations with Ohm's law in partially cubic domains

1. 

Université d'Orléans, Laboratoire MAPMO, CNRS UMR 7349, Fédération Denis Poisson, FR CNRS 2964, Bâtiment de Mathématiques, B.P. 6759, 45067 Orléans Cedex 2, France

Received  January 2012 Revised  June 2012 Published  January 2013

We prove a polynomial energy decay for the Maxwell's equations with Ohm's law in partially cubic domains with trapped rays. We extend the results of polynomial decay for the scalar damped wave equation in partially rectangular or cubic domain. Our approach have some similitude with the construction of reflected gaussian beams.
Citation: Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2229-2266. doi: 10.3934/cpaa.2013.12.2229
References:
[1]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Math. Methods Appl. Sci., 21 (1998), 823.   Google Scholar

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[3]

P. Boissoles, "Problèmes mathématiques et numériques issus de l'imagerie par résonance magnétique nucléaire,", Ph.D thesis, (2005).   Google Scholar

[4]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains,, Math. Res. Lett., 14 (2007), 35.   Google Scholar

[5]

M. Cessenat, "Mathematical Method in Electromagnetism, Linear Theory and Applications,", World Scientific, (1996).   Google Scholar

[6]

R. Dautray and J.-L. Lions, "Analyse mathématique et calcul numérique pour les sciences et les techniques, Volume 5, Spectre des opérateurs,", Masson, (1988).   Google Scholar

[7]

G. Duvaut and J.-L. Lions, "Les inéquations en mécanique et en physique,", Dunod, (1972).   Google Scholar

[8]

S. S. Krigman and C. E. Wayne, Boundary controllability of Maxwell's equations with nonzero conductivity inside a cube, I: Spectral controllability,, J. Math. Anal. Appl., 329 (2007), 1375.  doi: 10.1016/j.jmaa.2006.06.101.  Google Scholar

[9]

J.-L. Lions, "Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués I,", Masson, (1988).   Google Scholar

[10]

H. Nishiyama, Polynomial decay for damped wave equations on partially rectangular domains,, Math. Res. Lett., 16 (2009), 881.   Google Scholar

[11]

K. D. Phung, Contrôle et stabilisation d'ondes électromagnétiques,, ESAIM Control Optim. Calc. Var., 5 (2000), 87.  doi: 10.1051/cocv:2000103.  Google Scholar

[12]

K. D. Phung, Polynomial decay rate for the dissipative wave equation,, J. Diff. Eq., 240 (2007), 92.  doi: 10.1016/j.jde.2007.05.016.  Google Scholar

[13]

J. Ralston, Gaussian beams and propagation of singularities,, in, 23 (1982), 206.   Google Scholar

[14]

W. Wei, H-M. Yin and J. Tang, An optimal control problem for microwave heating,, Nonlinear Analysis, 75 (2012), 2024.  doi: 10.1016/j.na.2011.10.003.  Google Scholar

[15]

R. Ziolkowski, Exact solutions of the wave equation with complex source locations,, J. Math. Phys., 26 (1985), 861.  doi: 10.1063/1.526579.  Google Scholar

show all references

References:
[1]

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains,, Math. Methods Appl. Sci., 21 (1998), 823.   Google Scholar

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024.  doi: 10.1137/0330055.  Google Scholar

[3]

P. Boissoles, "Problèmes mathématiques et numériques issus de l'imagerie par résonance magnétique nucléaire,", Ph.D thesis, (2005).   Google Scholar

[4]

N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains,, Math. Res. Lett., 14 (2007), 35.   Google Scholar

[5]

M. Cessenat, "Mathematical Method in Electromagnetism, Linear Theory and Applications,", World Scientific, (1996).   Google Scholar

[6]

R. Dautray and J.-L. Lions, "Analyse mathématique et calcul numérique pour les sciences et les techniques, Volume 5, Spectre des opérateurs,", Masson, (1988).   Google Scholar

[7]

G. Duvaut and J.-L. Lions, "Les inéquations en mécanique et en physique,", Dunod, (1972).   Google Scholar

[8]

S. S. Krigman and C. E. Wayne, Boundary controllability of Maxwell's equations with nonzero conductivity inside a cube, I: Spectral controllability,, J. Math. Anal. Appl., 329 (2007), 1375.  doi: 10.1016/j.jmaa.2006.06.101.  Google Scholar

[9]

J.-L. Lions, "Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués I,", Masson, (1988).   Google Scholar

[10]

H. Nishiyama, Polynomial decay for damped wave equations on partially rectangular domains,, Math. Res. Lett., 16 (2009), 881.   Google Scholar

[11]

K. D. Phung, Contrôle et stabilisation d'ondes électromagnétiques,, ESAIM Control Optim. Calc. Var., 5 (2000), 87.  doi: 10.1051/cocv:2000103.  Google Scholar

[12]

K. D. Phung, Polynomial decay rate for the dissipative wave equation,, J. Diff. Eq., 240 (2007), 92.  doi: 10.1016/j.jde.2007.05.016.  Google Scholar

[13]

J. Ralston, Gaussian beams and propagation of singularities,, in, 23 (1982), 206.   Google Scholar

[14]

W. Wei, H-M. Yin and J. Tang, An optimal control problem for microwave heating,, Nonlinear Analysis, 75 (2012), 2024.  doi: 10.1016/j.na.2011.10.003.  Google Scholar

[15]

R. Ziolkowski, Exact solutions of the wave equation with complex source locations,, J. Math. Phys., 26 (1985), 861.  doi: 10.1063/1.526579.  Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[8]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[9]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[10]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[11]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[12]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[15]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[16]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[17]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[18]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]