-
Previous Article
Convexity of solutions to boundary blow-up problems
- CPAA Home
- This Issue
-
Next Article
Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation
Energy decay for Maxwell's equations with Ohm's law in partially cubic domains
1. | Université d'Orléans, Laboratoire MAPMO, CNRS UMR 7349, Fédération Denis Poisson, FR CNRS 2964, Bâtiment de Mathématiques, B.P. 6759, 45067 Orléans Cedex 2, France |
References:
[1] |
C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998), 823-864. |
[2] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[3] |
P. Boissoles, "Problèmes mathématiques et numériques issus de l'imagerie par résonance magnétique nucléaire," Ph.D thesis, Université de Rennes 1, 2005. |
[4] |
N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 14 (2007), 35-47. |
[5] |
M. Cessenat, "Mathematical Method in Electromagnetism, Linear Theory and Applications," World Scientific, Singapore, 1996. |
[6] |
R. Dautray and J.-L. Lions, "Analyse mathématique et calcul numérique pour les sciences et les techniques, Volume 5, Spectre des opérateurs," Masson, Paris, 1988. |
[7] |
G. Duvaut and J.-L. Lions, "Les inéquations en mécanique et en physique," Dunod, Paris, 1972. |
[8] |
S. S. Krigman and C. E. Wayne, Boundary controllability of Maxwell's equations with nonzero conductivity inside a cube, I: Spectral controllability, J. Math. Anal. Appl., 329 (2007), 1375-1396.
doi: 10.1016/j.jmaa.2006.06.101. |
[9] |
J.-L. Lions, "Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués I," Masson, Paris, 1988. |
[10] |
H. Nishiyama, Polynomial decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 16 (2009), 881-894. |
[11] |
K. D. Phung, Contrôle et stabilisation d'ondes électromagnétiques, ESAIM Control Optim. Calc. Var., 5 (2000), 87-137.
doi: 10.1051/cocv:2000103. |
[12] |
K. D. Phung, Polynomial decay rate for the dissipative wave equation, J. Diff. Eq., 240 (2007), 92-124.
doi: 10.1016/j.jde.2007.05.016. |
[13] |
J. Ralston, Gaussian beams and propagation of singularities, in "Studies in Partial Differential Equations" (eds. W. Littman), MAA studies in Mathematics, 23 (1982), 206-248. |
[14] |
W. Wei, H-M. Yin and J. Tang, An optimal control problem for microwave heating, Nonlinear Analysis, 75 (2012), 2024-2036.
doi: 10.1016/j.na.2011.10.003. |
[15] |
R. Ziolkowski, Exact solutions of the wave equation with complex source locations, J. Math. Phys., 26 (1985), 861-863.
doi: 10.1063/1.526579. |
show all references
References:
[1] |
C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998), 823-864. |
[2] |
C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[3] |
P. Boissoles, "Problèmes mathématiques et numériques issus de l'imagerie par résonance magnétique nucléaire," Ph.D thesis, Université de Rennes 1, 2005. |
[4] |
N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 14 (2007), 35-47. |
[5] |
M. Cessenat, "Mathematical Method in Electromagnetism, Linear Theory and Applications," World Scientific, Singapore, 1996. |
[6] |
R. Dautray and J.-L. Lions, "Analyse mathématique et calcul numérique pour les sciences et les techniques, Volume 5, Spectre des opérateurs," Masson, Paris, 1988. |
[7] |
G. Duvaut and J.-L. Lions, "Les inéquations en mécanique et en physique," Dunod, Paris, 1972. |
[8] |
S. S. Krigman and C. E. Wayne, Boundary controllability of Maxwell's equations with nonzero conductivity inside a cube, I: Spectral controllability, J. Math. Anal. Appl., 329 (2007), 1375-1396.
doi: 10.1016/j.jmaa.2006.06.101. |
[9] |
J.-L. Lions, "Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués I," Masson, Paris, 1988. |
[10] |
H. Nishiyama, Polynomial decay for damped wave equations on partially rectangular domains, Math. Res. Lett., 16 (2009), 881-894. |
[11] |
K. D. Phung, Contrôle et stabilisation d'ondes électromagnétiques, ESAIM Control Optim. Calc. Var., 5 (2000), 87-137.
doi: 10.1051/cocv:2000103. |
[12] |
K. D. Phung, Polynomial decay rate for the dissipative wave equation, J. Diff. Eq., 240 (2007), 92-124.
doi: 10.1016/j.jde.2007.05.016. |
[13] |
J. Ralston, Gaussian beams and propagation of singularities, in "Studies in Partial Differential Equations" (eds. W. Littman), MAA studies in Mathematics, 23 (1982), 206-248. |
[14] |
W. Wei, H-M. Yin and J. Tang, An optimal control problem for microwave heating, Nonlinear Analysis, 75 (2012), 2024-2036.
doi: 10.1016/j.na.2011.10.003. |
[15] |
R. Ziolkowski, Exact solutions of the wave equation with complex source locations, J. Math. Phys., 26 (1985), 861-863.
doi: 10.1063/1.526579. |
[1] |
W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431 |
[2] |
Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257 |
[3] |
Annalena Albicker, Roland Griesmaier. Monotonicity in inverse scattering for Maxwell's equations. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022032 |
[4] |
Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251 |
[5] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[6] |
Quyen Tran, Harbir Antil, Hugo Díaz. Optimal control of parameterized stationary Maxwell's system: Reduced basis, convergence analysis, and a posteriori error estimates. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022003 |
[7] |
Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181 |
[8] |
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473 |
[9] |
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117 |
[10] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[11] |
Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051 |
[12] |
B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems and Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405 |
[13] |
Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547 |
[14] |
Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159 |
[15] |
Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607 |
[16] |
Marco Cappiello, Fabio Nicola. Sharp decay estimates and smoothness for solutions to nonlocal semilinear equations. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1869-1880. doi: 10.3934/dcds.2016.36.1869 |
[17] |
Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69 |
[18] |
Cristina Brändle, Arturo De Pablo. Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1161-1178. doi: 10.3934/cpaa.2018056 |
[19] |
J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485 |
[20] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]