-
Previous Article
On behavior of signs for the heat equation and a diffusion method for data separation
- CPAA Home
- This Issue
-
Next Article
Energy decay for Maxwell's equations with Ohm's law in partially cubic domains
Convexity of solutions to boundary blow-up problems
1. | Department of Mathematics and Statistics, P.O.Box 35, FIN-40014 University of Jyväskylä, Finland |
References:
[1] |
H. Aikawa, T. Kilpeläinen, N. Shanmugalingam and X. Zhong, Boundary Harnack principle for $p$-harmonic functions in smooth Euclidean domains, Potential Anal., 26 (2007), 281-301.
doi: 10.1007/s11118-006-9036-y. |
[2] |
O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl., 76 (1997), 265-288.
doi: 10.1016/S0021-7824(97)89952-7. |
[3] |
L. Bieberbach, $\Delta u= e^u$ und die automorphen Funktionen, Math. Ann., 77 (1916), 173-212.
doi: 10.1007/BF01456901. |
[4] |
O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry, J. Differential Equations, 249 (2010), 931-964.
doi: 10.1016/j.jde.2010.02.023. |
[5] |
M. G. Crandall and H. Ishii, The maximum principle for semicontinuous functions, Differential Integral Equations, 3 (1990), 1001-1014. |
[6] |
M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[7] |
G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Anal., 20 (1993), 97-125.
doi: 10.1016/0362-546X(93)90012-H. |
[8] |
W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc., 54 (1987), 141-175.
doi: 10.1112/plms/s3-54.1.141. |
[9] |
M. Feldman, Variational evolution problems and nonlocal geometric motion, Arch. Ration. Mech. Anal., 146 (1999), 221-274.
doi: 10.1007/s002050050142. |
[10] |
Y. Giga, "Surface Evolution Equations. A Level Set Approach," Monographs in Mathematics, 99. Birkhäuser Verlag, Basel, 2006. |
[11] |
P. Juutinen, The boundary Harnack inequality for infinite harmonic functions in Lipschitz domains satisfying the interior ball condition, Nonlinear Anal., 69 (2008), 1941-1944.
doi: 10.1016/j.na.2007.07.035. |
[12] |
P. Juutinen and J. D. Rossi, Large solutions for the infinity Laplacian, Adv. Calc. Var., 1 (2008), 271-289.
doi: 10.1515/ACV.2008.011. |
[13] |
B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE," Lecture Notes in Mathematics, 1150. Springer-Verlag, Berlin, 1985. |
[14] |
J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.
doi: 10.1002/cpa.3160100402. |
[15] |
Y. Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations, Comm. Pure Appl. Math., 58 (2005), 85-146.
doi: 10.1002/cpa.20051. |
[16] |
R. Osserman, On the inequality $\Delta u\ge f(u)$, Pacific J. Math., 7 (1957), 1641-1647.
doi: 10.2140/pjm.1957.7.1641. |
show all references
References:
[1] |
H. Aikawa, T. Kilpeläinen, N. Shanmugalingam and X. Zhong, Boundary Harnack principle for $p$-harmonic functions in smooth Euclidean domains, Potential Anal., 26 (2007), 281-301.
doi: 10.1007/s11118-006-9036-y. |
[2] |
O. Alvarez, J.-M. Lasry and P.-L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl., 76 (1997), 265-288.
doi: 10.1016/S0021-7824(97)89952-7. |
[3] |
L. Bieberbach, $\Delta u= e^u$ und die automorphen Funktionen, Math. Ann., 77 (1916), 173-212.
doi: 10.1007/BF01456901. |
[4] |
O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry, J. Differential Equations, 249 (2010), 931-964.
doi: 10.1016/j.jde.2010.02.023. |
[5] |
M. G. Crandall and H. Ishii, The maximum principle for semicontinuous functions, Differential Integral Equations, 3 (1990), 1001-1014. |
[6] |
M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[7] |
G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Anal., 20 (1993), 97-125.
doi: 10.1016/0362-546X(93)90012-H. |
[8] |
W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc., 54 (1987), 141-175.
doi: 10.1112/plms/s3-54.1.141. |
[9] |
M. Feldman, Variational evolution problems and nonlocal geometric motion, Arch. Ration. Mech. Anal., 146 (1999), 221-274.
doi: 10.1007/s002050050142. |
[10] |
Y. Giga, "Surface Evolution Equations. A Level Set Approach," Monographs in Mathematics, 99. Birkhäuser Verlag, Basel, 2006. |
[11] |
P. Juutinen, The boundary Harnack inequality for infinite harmonic functions in Lipschitz domains satisfying the interior ball condition, Nonlinear Anal., 69 (2008), 1941-1944.
doi: 10.1016/j.na.2007.07.035. |
[12] |
P. Juutinen and J. D. Rossi, Large solutions for the infinity Laplacian, Adv. Calc. Var., 1 (2008), 271-289.
doi: 10.1515/ACV.2008.011. |
[13] |
B. Kawohl, "Rearrangements and Convexity of Level Sets in PDE," Lecture Notes in Mathematics, 1150. Springer-Verlag, Berlin, 1985. |
[14] |
J. B. Keller, On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math., 10 (1957), 503-510.
doi: 10.1002/cpa.3160100402. |
[15] |
Y. Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations, Comm. Pure Appl. Math., 58 (2005), 85-146.
doi: 10.1002/cpa.20051. |
[16] |
R. Osserman, On the inequality $\Delta u\ge f(u)$, Pacific J. Math., 7 (1957), 1641-1647.
doi: 10.2140/pjm.1957.7.1641. |
[1] |
Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691 |
[2] |
Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555 |
[3] |
Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225 |
[4] |
Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881 |
[5] |
Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271 |
[6] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[7] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
[8] |
Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 |
[9] |
Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1 |
[10] |
Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54 |
[11] |
Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 |
[12] |
Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure and Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521 |
[13] |
C. Brändle, F. Quirós, Julio D. Rossi. Non-simultaneous blow-up for a quasilinear parabolic system with reaction at the boundary. Communications on Pure and Applied Analysis, 2005, 4 (3) : 523-536. doi: 10.3934/cpaa.2005.4.523 |
[14] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[15] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
[16] |
Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113 |
[17] |
Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935 |
[18] |
Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006 |
[19] |
Lan Qiao, Sining Zheng. Non-simultaneous blow-up for heat equations with positive-negative sources and coupled boundary flux. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1113-1129. doi: 10.3934/cpaa.2007.6.1113 |
[20] |
Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]