September  2013, 12(5): 2277-2296. doi: 10.3934/cpaa.2013.12.2277

On behavior of signs for the heat equation and a diffusion method for data separation

1. 

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

2. 

Graduate School of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Tokyo 153-8914

3. 

Division of Mathematical Sciences, Graduate School of Engineering, Gunma University, 4-2 Aramaki-cho, Maebashi, 371-8510

4. 

Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153-8914

Received  February 2012 Revised  October 2012 Published  January 2013

Consider the solution $u(x,t)$ of the heat equation with initial data $u_0$. The diffusive sign $S_D[u_0](x)$ is defined by the limit of sign of $u(x,t)$ as $t\to 0$. A sufficient condition for $x\in R^d$ and $u_0$ such that $S_D[u_0](x)$ is well-defined is given. A few examples of $u_0$ violating and fulfilling this condition are given. It turns out that this diffusive sign is also related to variational problem whose energy is the Dirichlet energy with a fidelity term. If initial data is a difference of characteristic functions of two disjoint sets, it turns out that the boundary of the set $S_D[u_0](x) = 1$ (or $-1$) is roughly an equi-distance hypersurface from $A$ and $B$ and this gives a separation of two data sets.
Citation: Mi-Ho Giga, Yoshikazu Giga, Takeshi Ohtsuka, Noriaki Umeda. On behavior of signs for the heat equation and a diffusion method for data separation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2277-2296. doi: 10.3934/cpaa.2013.12.2277
References:
[1]

F. Andreu-Vaillo, V. Caselles and J. M. Mazón, "Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,'', Progress in Mathematics, 223 (2004).  doi: 10.1007/978-3-0348-7928-6.  Google Scholar

[2]

S. Angenent, The zero set of a solution of a parabolic equation,, J. Reine Angew. Math., 390 (1988), 79.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[3]

A. L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classification of high dimensional data,, Multiscale Modeling and Simulation, 10 (2012), 1090.  doi: 10.1137/11083109X.  Google Scholar

[4]

M. Bonforte and A. Figalli, Total variation flow and sign fast diffusion in one dimension,, J. Differential Equations, 252 (2012), 4455.  doi: 10.1016/j.jde.2012.01.003.  Google Scholar

[5]

A. Briani, A. Chambolle, M. Novaga and G. Orlandi, On the gradient flow of a one-homogeneous functional,, Confluentes Mathematici, 3 (2011), 617.  doi: 10.1142/S1793744211000461.  Google Scholar

[6]

A. Chambolle, An algorithm for mean curvature motion,, Interfaces and free boundaries, 6 (2004), 195.  doi: 10.4171/IFB/97.  Google Scholar

[7]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[8]

X.-Y. Chen, A strong unique continuation theorem for parabolic equations,, Math. Ann., 311 (1998), 603.  doi: 10.1007/s002080050202.  Google Scholar

[9]

X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations,, J. Differential Equations, 78 (1989), 160.  doi: 10.1016/0022-0396(89)90081-8.  Google Scholar

[10]

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps,, Proc. Natl. Acad. Sci., 102 (2005), 7426.  doi: 10.1073/pnas.0500334102.  Google Scholar

[11]

N. Cristianini and J. Shawe-Taylor, "An Introduction to Support Vector Machines and Other Kernel-based Learning Methods,'', Cambridge University Press, (2000).   Google Scholar

[12]

M.-H. Giga and Y. Giga, Very singular diffusion equations: second and fourth order problems,, Japan J. Indust. Appl. Math., 27 (2010), 323.  doi: 10.1007/s13160-010-0020-y.  Google Scholar

[13]

M.-H. Giga, Y. Giga and J. Saal, "Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-similar Solutions,'', Progress in Nonlinear Differential Equations and Their Applications, 79 (2010).  doi: 10.1007/978-0-8176-4651-6.  Google Scholar

[14]

D. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations,, J. Differential Equations, 598 (1985), 165.  doi: 10.1016/0022-0396(85)90153-6.  Google Scholar

[15]

K. Kielak, P. B. Mucha and P. Rybka, Almost classical solutions to the total variation flow., (to appear in Journal of Evolution Equations), ().  doi: 10.1007/s00028-012-0167-x.  Google Scholar

[16]

H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation,, J. Fac. Sci. Univ. Tokyo Sect. IA Math. \textbf{29} (1982), 29 (1982), 401.   Google Scholar

[17]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza: il Teorema di Modica-Mortola,, Boll. Un. Mat. Ital., (B5) (1977), 285.   Google Scholar

[18]

K. Nickel, Gestaltaussagen über Lösungen parabolischer Differentialgleighungen,, J. Reine Angew. Math., 211 (1962), 78.  doi: 10.1515/crll.1962.211.78.  Google Scholar

[19]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,'', Englewood Cliffs, (1967).   Google Scholar

[20]

W. Ring, Structural properties of solutions to total variation regularization problems,, M2AN Math. Model. Numer. Anal., 34 (2000), 799.  doi: 10.1051/m2an:2000104.  Google Scholar

[21]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Phys. D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[22]

G. Steidl, Supervised learning by support vector machines,, "Handbook of Mathematical Methods in Imaging'' (O. Scherzer ed.),, 3 (2011), 959.   Google Scholar

[23]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems,, Arch. Rational Mech. Anal., 101 (1988), 209.  doi: 10.1007/BF00253122.  Google Scholar

[24]

D. G. Widder, "The Heat Equations,'', Academic Press, (1975).   Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, V. Caselles and J. M. Mazón, "Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,'', Progress in Mathematics, 223 (2004).  doi: 10.1007/978-3-0348-7928-6.  Google Scholar

[2]

S. Angenent, The zero set of a solution of a parabolic equation,, J. Reine Angew. Math., 390 (1988), 79.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[3]

A. L. Bertozzi and A. Flenner, Diffuse interface models on graphs for classification of high dimensional data,, Multiscale Modeling and Simulation, 10 (2012), 1090.  doi: 10.1137/11083109X.  Google Scholar

[4]

M. Bonforte and A. Figalli, Total variation flow and sign fast diffusion in one dimension,, J. Differential Equations, 252 (2012), 4455.  doi: 10.1016/j.jde.2012.01.003.  Google Scholar

[5]

A. Briani, A. Chambolle, M. Novaga and G. Orlandi, On the gradient flow of a one-homogeneous functional,, Confluentes Mathematici, 3 (2011), 617.  doi: 10.1142/S1793744211000461.  Google Scholar

[6]

A. Chambolle, An algorithm for mean curvature motion,, Interfaces and free boundaries, 6 (2004), 195.  doi: 10.4171/IFB/97.  Google Scholar

[7]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential Equations, 96 (1992), 116.  doi: 10.1016/0022-0396(92)90146-E.  Google Scholar

[8]

X.-Y. Chen, A strong unique continuation theorem for parabolic equations,, Math. Ann., 311 (1998), 603.  doi: 10.1007/s002080050202.  Google Scholar

[9]

X.-Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations,, J. Differential Equations, 78 (1989), 160.  doi: 10.1016/0022-0396(89)90081-8.  Google Scholar

[10]

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps,, Proc. Natl. Acad. Sci., 102 (2005), 7426.  doi: 10.1073/pnas.0500334102.  Google Scholar

[11]

N. Cristianini and J. Shawe-Taylor, "An Introduction to Support Vector Machines and Other Kernel-based Learning Methods,'', Cambridge University Press, (2000).   Google Scholar

[12]

M.-H. Giga and Y. Giga, Very singular diffusion equations: second and fourth order problems,, Japan J. Indust. Appl. Math., 27 (2010), 323.  doi: 10.1007/s13160-010-0020-y.  Google Scholar

[13]

M.-H. Giga, Y. Giga and J. Saal, "Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-similar Solutions,'', Progress in Nonlinear Differential Equations and Their Applications, 79 (2010).  doi: 10.1007/978-0-8176-4651-6.  Google Scholar

[14]

D. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations,, J. Differential Equations, 598 (1985), 165.  doi: 10.1016/0022-0396(85)90153-6.  Google Scholar

[15]

K. Kielak, P. B. Mucha and P. Rybka, Almost classical solutions to the total variation flow., (to appear in Journal of Evolution Equations), ().  doi: 10.1007/s00028-012-0167-x.  Google Scholar

[16]

H. Matano, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation,, J. Fac. Sci. Univ. Tokyo Sect. IA Math. \textbf{29} (1982), 29 (1982), 401.   Google Scholar

[17]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza: il Teorema di Modica-Mortola,, Boll. Un. Mat. Ital., (B5) (1977), 285.   Google Scholar

[18]

K. Nickel, Gestaltaussagen über Lösungen parabolischer Differentialgleighungen,, J. Reine Angew. Math., 211 (1962), 78.  doi: 10.1515/crll.1962.211.78.  Google Scholar

[19]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,'', Englewood Cliffs, (1967).   Google Scholar

[20]

W. Ring, Structural properties of solutions to total variation regularization problems,, M2AN Math. Model. Numer. Anal., 34 (2000), 799.  doi: 10.1051/m2an:2000104.  Google Scholar

[21]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Phys. D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[22]

G. Steidl, Supervised learning by support vector machines,, "Handbook of Mathematical Methods in Imaging'' (O. Scherzer ed.),, 3 (2011), 959.   Google Scholar

[23]

P. Sternberg, The effect of a singular perturbation on nonconvex variational problems,, Arch. Rational Mech. Anal., 101 (1988), 209.  doi: 10.1007/BF00253122.  Google Scholar

[24]

D. G. Widder, "The Heat Equations,'', Academic Press, (1975).   Google Scholar

[1]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[2]

J. Húska, Peter Poláčik, M.V. Safonov. Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations. Conference Publications, 2005, 2005 (Special) : 427-435. doi: 10.3934/proc.2005.2005.427

[3]

Wei Long, Shuangjie Peng, Jing Yang. Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 917-939. doi: 10.3934/dcds.2016.36.917

[4]

Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure & Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004

[5]

Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032

[6]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

[7]

Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009

[8]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[9]

Tsung-Fang Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 383-405. doi: 10.3934/cpaa.2008.7.383

[10]

M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

[11]

Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151

[12]

Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737

[13]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[14]

Salomón Alarcón, Jinggang Tan. Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5825-5846. doi: 10.3934/dcds.2019256

[15]

Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697

[16]

Yinbin Deng, Wei Shuai. Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3139-3168. doi: 10.3934/dcds.2018137

[17]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[18]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[19]

Jijiang Sun, Shiwang Ma. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2317-2330. doi: 10.3934/cpaa.2014.13.2317

[20]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

[Back to Top]