September  2013, 12(5): 2297-2318. doi: 10.3934/cpaa.2013.12.2297

Classification of bifurcation diagrams of a $P$-Laplacian nonpositone problem

1. 

Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

2. 

Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 300

3. 

Department of Applied Mathematics, National University of Tainan, Tainan 700, Taiwan

Received  February 2012 Revised  April 2012 Published  January 2013

We study the bifurcation diagrams of positive solutions of the $p$-Laplacian Dirichlet problem \begin{eqnarray*} (\varphi_p(u'(x)))'+f_\lambda(u(x))=0, -1 < x < 1, \\ u(-1)=u(1)=0, \end{eqnarray*} where $\varphi_p(y)=|y|^{p-2}y$, $(\varphi_p(u'))'$ is the one-dimensional $p$-Laplacian, $p>1$, the nonlinearity $f_\lambda(u)=\lambda g(u)-h(u),$ $g,h\in C[0,\infty)\cap C^2(0,\infty )$, and $\lambda >0$ is a bifurcation parameter. Under certain hypotheses on functions $g$ and $h$, we give a complete classification of bifurcation diagrams. We prove that, on the $(\lambda, |u|_\infty)$-plane, each bifurcation diagram consists of exactly one curve which has exactly one turning point where the curve turns to the right. Hence we are able to determine the exact multiplicity of positive solutions for each $\lambda >0.$ In addition, we show the evolution phenomena of bifurcation diagrams of polynomial nonlinearities with positive coefficients.
Citation: Po-Chun Huang, Shin-Hwa Wang, Tzung-Shin Yeh. Classification of bifurcation diagrams of a $P$-Laplacian nonpositone problem. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2297-2318. doi: 10.3934/cpaa.2013.12.2297
References:
[1]

J. G. Cheng, Exact number of positive solutions for a class of semipositone problems,, J. Math. Anal. Appl., 280 (2003), 197.  doi: 10.1016/S0022-247X(02)00539-5.  Google Scholar

[2]

J. G. Cheng, Uniqueness results for the one-dimensional $p$-Laplacian,, J. Math. Anal. Appl., 311 (2005), 381.  doi: 10.1016/j.jmaa.2005.02.057.  Google Scholar

[3]

J. G. Cheng, Exact number of positive solutions for semipositone problems,, J. Math. Anal. Appl., 313 (2006), 322.  doi: 10.1016/j.jmaa.2005.09.043.  Google Scholar

[4]

J. I. Díaz, "Nonlinear Partial Differential Equations and Free Boundaries, Vol. I. Elliptic Equations,", Research Notes in Mathematics, (1985).   Google Scholar

[5]

J. I. Díaz, Qualitative study of nonlinear parabolic equations: an introduction,, Extracta Math., 16 (2001), 303.   Google Scholar

[6]

J. I. Díaz and J. Hernández, Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem,, C. R. Acad. Sci. Paris S\'er. I Math., 329 (1999), 587.  doi: 10.1016/S0764-4442(00)80006-3.  Google Scholar

[7]

J. I. Díaz, J. Hernández and F. J. Mancebo, Branches of positive and free boundary solutions for some singular quasilinear elliptic problems,, J. Math. Anal. Appl., 352 (2009), 449.  doi: 10.1016/j.jmaa.2008.07.073.  Google Scholar

[8]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,, Indiana Univ. Math. J., 20 (1970), 1.   Google Scholar

[9]

A. Lakmeche and A. Hammoudi, Multiple positive solutions of the one-dimensional $p$-Laplacian,, J. Math. Anal. Appl., 317 (2006), 43.  doi: 10.1016/j.jmaa.2005.10.040.  Google Scholar

[10]

H. L. Royden, "Real Analysis,", Macmillan, (1988).   Google Scholar

[11]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, J. Differential Equations, 39 (1981), 269.  doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

[12]

S.-H. Wang and T.-S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities,, J. Math. Anal. Appl., 291 (2004), 128.  doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar

[13]

Z. L. Wei and C. C. Pang, Exact structure of positive solutions for some $p$-Laplacian equations,, J. Math. Anal. Appl., 301 (2005), 52.  doi: 10.1016/j.jmaa.2004.06.058.  Google Scholar

[14]

R. L. Wheeden and A. Zygmund, "Measure and Integral: An Introduction to Real Analysis,", Marcel Dekker, (1977).   Google Scholar

show all references

References:
[1]

J. G. Cheng, Exact number of positive solutions for a class of semipositone problems,, J. Math. Anal. Appl., 280 (2003), 197.  doi: 10.1016/S0022-247X(02)00539-5.  Google Scholar

[2]

J. G. Cheng, Uniqueness results for the one-dimensional $p$-Laplacian,, J. Math. Anal. Appl., 311 (2005), 381.  doi: 10.1016/j.jmaa.2005.02.057.  Google Scholar

[3]

J. G. Cheng, Exact number of positive solutions for semipositone problems,, J. Math. Anal. Appl., 313 (2006), 322.  doi: 10.1016/j.jmaa.2005.09.043.  Google Scholar

[4]

J. I. Díaz, "Nonlinear Partial Differential Equations and Free Boundaries, Vol. I. Elliptic Equations,", Research Notes in Mathematics, (1985).   Google Scholar

[5]

J. I. Díaz, Qualitative study of nonlinear parabolic equations: an introduction,, Extracta Math., 16 (2001), 303.   Google Scholar

[6]

J. I. Díaz and J. Hernández, Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem,, C. R. Acad. Sci. Paris S\'er. I Math., 329 (1999), 587.  doi: 10.1016/S0764-4442(00)80006-3.  Google Scholar

[7]

J. I. Díaz, J. Hernández and F. J. Mancebo, Branches of positive and free boundary solutions for some singular quasilinear elliptic problems,, J. Math. Anal. Appl., 352 (2009), 449.  doi: 10.1016/j.jmaa.2008.07.073.  Google Scholar

[8]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,, Indiana Univ. Math. J., 20 (1970), 1.   Google Scholar

[9]

A. Lakmeche and A. Hammoudi, Multiple positive solutions of the one-dimensional $p$-Laplacian,, J. Math. Anal. Appl., 317 (2006), 43.  doi: 10.1016/j.jmaa.2005.10.040.  Google Scholar

[10]

H. L. Royden, "Real Analysis,", Macmillan, (1988).   Google Scholar

[11]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, J. Differential Equations, 39 (1981), 269.  doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

[12]

S.-H. Wang and T.-S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities,, J. Math. Anal. Appl., 291 (2004), 128.  doi: 10.1016/j.jmaa.2003.10.021.  Google Scholar

[13]

Z. L. Wei and C. C. Pang, Exact structure of positive solutions for some $p$-Laplacian equations,, J. Math. Anal. Appl., 301 (2005), 52.  doi: 10.1016/j.jmaa.2004.06.058.  Google Scholar

[14]

R. L. Wheeden and A. Zygmund, "Measure and Integral: An Introduction to Real Analysis,", Marcel Dekker, (1977).   Google Scholar

[1]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[2]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004

[3]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[4]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[5]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[10]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

[11]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293

[12]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[13]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281

[14]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[15]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[16]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[17]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[18]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[19]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[20]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]