-
Previous Article
The expansion of gas from a wedge with small angle into a vacuum
- CPAA Home
- This Issue
-
Next Article
On behavior of signs for the heat equation and a diffusion method for data separation
Classification of bifurcation diagrams of a $P$-Laplacian nonpositone problem
1. | Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan |
2. | Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 300 |
3. | Department of Applied Mathematics, National University of Tainan, Tainan 700, Taiwan |
References:
[1] |
J. G. Cheng, Exact number of positive solutions for a class of semipositone problems,, J. Math. Anal. Appl., 280 (2003), 197.
doi: 10.1016/S0022-247X(02)00539-5. |
[2] |
J. G. Cheng, Uniqueness results for the one-dimensional $p$-Laplacian,, J. Math. Anal. Appl., 311 (2005), 381.
doi: 10.1016/j.jmaa.2005.02.057. |
[3] |
J. G. Cheng, Exact number of positive solutions for semipositone problems,, J. Math. Anal. Appl., 313 (2006), 322.
doi: 10.1016/j.jmaa.2005.09.043. |
[4] |
J. I. Díaz, "Nonlinear Partial Differential Equations and Free Boundaries, Vol. I. Elliptic Equations,", Research Notes in Mathematics, (1985).
|
[5] |
J. I. Díaz, Qualitative study of nonlinear parabolic equations: an introduction,, Extracta Math., 16 (2001), 303.
|
[6] |
J. I. Díaz and J. Hernández, Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem,, C. R. Acad. Sci. Paris S\'er. I Math., 329 (1999), 587.
doi: 10.1016/S0764-4442(00)80006-3. |
[7] |
J. I. Díaz, J. Hernández and F. J. Mancebo, Branches of positive and free boundary solutions for some singular quasilinear elliptic problems,, J. Math. Anal. Appl., 352 (2009), 449.
doi: 10.1016/j.jmaa.2008.07.073. |
[8] |
T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,, Indiana Univ. Math. J., 20 (1970), 1.
|
[9] |
A. Lakmeche and A. Hammoudi, Multiple positive solutions of the one-dimensional $p$-Laplacian,, J. Math. Anal. Appl., 317 (2006), 43.
doi: 10.1016/j.jmaa.2005.10.040. |
[10] |
H. L. Royden, "Real Analysis,", Macmillan, (1988).
|
[11] |
J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, J. Differential Equations, 39 (1981), 269.
doi: 10.1016/0022-0396(81)90077-2. |
[12] |
S.-H. Wang and T.-S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities,, J. Math. Anal. Appl., 291 (2004), 128.
doi: 10.1016/j.jmaa.2003.10.021. |
[13] |
Z. L. Wei and C. C. Pang, Exact structure of positive solutions for some $p$-Laplacian equations,, J. Math. Anal. Appl., 301 (2005), 52.
doi: 10.1016/j.jmaa.2004.06.058. |
[14] |
R. L. Wheeden and A. Zygmund, "Measure and Integral: An Introduction to Real Analysis,", Marcel Dekker, (1977).
|
show all references
References:
[1] |
J. G. Cheng, Exact number of positive solutions for a class of semipositone problems,, J. Math. Anal. Appl., 280 (2003), 197.
doi: 10.1016/S0022-247X(02)00539-5. |
[2] |
J. G. Cheng, Uniqueness results for the one-dimensional $p$-Laplacian,, J. Math. Anal. Appl., 311 (2005), 381.
doi: 10.1016/j.jmaa.2005.02.057. |
[3] |
J. G. Cheng, Exact number of positive solutions for semipositone problems,, J. Math. Anal. Appl., 313 (2006), 322.
doi: 10.1016/j.jmaa.2005.09.043. |
[4] |
J. I. Díaz, "Nonlinear Partial Differential Equations and Free Boundaries, Vol. I. Elliptic Equations,", Research Notes in Mathematics, (1985).
|
[5] |
J. I. Díaz, Qualitative study of nonlinear parabolic equations: an introduction,, Extracta Math., 16 (2001), 303.
|
[6] |
J. I. Díaz and J. Hernández, Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem,, C. R. Acad. Sci. Paris S\'er. I Math., 329 (1999), 587.
doi: 10.1016/S0764-4442(00)80006-3. |
[7] |
J. I. Díaz, J. Hernández and F. J. Mancebo, Branches of positive and free boundary solutions for some singular quasilinear elliptic problems,, J. Math. Anal. Appl., 352 (2009), 449.
doi: 10.1016/j.jmaa.2008.07.073. |
[8] |
T. Laetsch, The number of solutions of a nonlinear two point boundary value problem,, Indiana Univ. Math. J., 20 (1970), 1.
|
[9] |
A. Lakmeche and A. Hammoudi, Multiple positive solutions of the one-dimensional $p$-Laplacian,, J. Math. Anal. Appl., 317 (2006), 43.
doi: 10.1016/j.jmaa.2005.10.040. |
[10] |
H. L. Royden, "Real Analysis,", Macmillan, (1988).
|
[11] |
J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, J. Differential Equations, 39 (1981), 269.
doi: 10.1016/0022-0396(81)90077-2. |
[12] |
S.-H. Wang and T.-S. Yeh, A complete classification of bifurcation diagrams of a Dirichlet problem with concave-convex nonlinearities,, J. Math. Anal. Appl., 291 (2004), 128.
doi: 10.1016/j.jmaa.2003.10.021. |
[13] |
Z. L. Wei and C. C. Pang, Exact structure of positive solutions for some $p$-Laplacian equations,, J. Math. Anal. Appl., 301 (2005), 52.
doi: 10.1016/j.jmaa.2004.06.058. |
[14] |
R. L. Wheeden and A. Zygmund, "Measure and Integral: An Introduction to Real Analysis,", Marcel Dekker, (1977).
|
[1] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[2] |
Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004 |
[3] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[4] |
Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021006 |
[5] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[6] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[7] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[8] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[9] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[10] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[11] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[12] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[13] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281 |
[14] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[15] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[16] |
Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311 |
[17] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[18] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[19] |
Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128 |
[20] |
Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020055 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]