• Previous Article
    Systems of singular integral equations and applications to existence of reversed flow solutions of Falkner-Skan equations
  • CPAA Home
  • This Issue
  • Next Article
    Oblique derivative problems for elliptic and parabolic equations
November  2013, 12(6): 2445-2464. doi: 10.3934/cpaa.2013.12.2445

A Brezis-Nirenberg result for non-local critical equations in low dimension

1. 

Dipartimento di Matematica, Università degli Studi della Calabria, Ponte Pietro Bucci 31B, I–87036 Arcavacata di Rende

2. 

Università di Roma Tor Vergata, Dipartimento di Matematica, Via della Ricerca Scientifica, I-00133 Rome

Received  April 2012 Revised  January 2013 Published  May 2013

The present paper is devoted to the study of the following non-local fractional equation involving critical nonlinearities \begin{eqnarray} (-\Delta)^s u-\lambda u=|u|^{2^*-2}u, in \Omega \\ u=0, in R^n\setminus \Omega, \end{eqnarray} where $s\in (0,1)$ is fixed, $(-\Delta )^s$ is the fractional Laplace operator, $\lambda$ is a positive parameter, $2^*$ is the fractional critical Sobolev exponent and $\Omega$ is an open bounded subset of $R^n$, $n>2s$, with Lipschitz boundary. In the recent papers [14, 18, 19] we investigated the existence of non-trivial solutions for this problem when $\Omega$ is an open bounded subset of $R^n$ with $n\geq 4s$ and, in this framework, we prove some existence results. Aim of this paper is to complete the investigation carried on in [14, 18, 19], by considering the case when $2s < n < 4s$. In this context, we prove an existence theorem for our problem, which may be seen as a Brezis-Nirenberg type result in low dimension. In particular when $s=1$ (and consequently $n=3$) our result is the classical result obtained by Brezis and Nirenberg in the famous paper [4]. In this sense the present work may be considered as the extension of some classical results for the Laplacian to the case of non-local fractional operators.
Citation: Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445
References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some critical problems for the fractional Laplacian operator,, J. Differential Equations, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[3]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[4]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[5]

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 2 (1985), 463.   Google Scholar

[6]

M. Comte, Solutions of elliptic equations with critical Sobolev exponent in dimension three,, Nonlinear Anal., 17 (1991), 445.  doi: 10.1016/0362-546X(91)90139-R.  Google Scholar

[7]

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives,, J. Math. Anal. Appl., 295 (2004), 225.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[8]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

O. Druet, Elliptic equations with critical Sobolev exponents in dimension $3$,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 19 (2002), 125.   Google Scholar

[10]

A. Fiscella, Saddle point solutions for non-local elliptic operators,, preprint., ().   Google Scholar

[11]

F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations,, Adv. Differential Equations, 2 (1997), 555.   Google Scholar

[12]

P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 215.   Google Scholar

[13]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Reg. Conf. Ser. Math.}, (1986).   Google Scholar

[14]

R. Servadei, The Yamabe equation in a non-local setting,, preprint, (): 12.   Google Scholar

[15]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, to appear in Rev. Mat. Iberoam., 29 (2013).   Google Scholar

[16]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, J. Math. Anal. Appl., 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[17]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, Discrete Contin. Dyn. Syst., 33 (2013), 2105.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[18]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, to appear in Trans. Amer. Math. Soc., ().   Google Scholar

[19]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent,, preprint, (): 12.   Google Scholar

[20]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Ergebnisse der Mathematik und ihrer Grenzgebiete, (1990).   Google Scholar

[21]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 36 (2011), 21.   Google Scholar

[22]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, (1996).   Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some critical problems for the fractional Laplacian operator,, J. Differential Equations, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[3]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[4]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[5]

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 2 (1985), 463.   Google Scholar

[6]

M. Comte, Solutions of elliptic equations with critical Sobolev exponent in dimension three,, Nonlinear Anal., 17 (1991), 445.  doi: 10.1016/0362-546X(91)90139-R.  Google Scholar

[7]

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives,, J. Math. Anal. Appl., 295 (2004), 225.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[8]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

O. Druet, Elliptic equations with critical Sobolev exponents in dimension $3$,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 19 (2002), 125.   Google Scholar

[10]

A. Fiscella, Saddle point solutions for non-local elliptic operators,, preprint., ().   Google Scholar

[11]

F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations,, Adv. Differential Equations, 2 (1997), 555.   Google Scholar

[12]

P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 215.   Google Scholar

[13]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Reg. Conf. Ser. Math.}, (1986).   Google Scholar

[14]

R. Servadei, The Yamabe equation in a non-local setting,, preprint, (): 12.   Google Scholar

[15]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, to appear in Rev. Mat. Iberoam., 29 (2013).   Google Scholar

[16]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, J. Math. Anal. Appl., 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[17]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, Discrete Contin. Dyn. Syst., 33 (2013), 2105.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[18]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, to appear in Trans. Amer. Math. Soc., ().   Google Scholar

[19]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent,, preprint, (): 12.   Google Scholar

[20]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Ergebnisse der Mathematik und ihrer Grenzgebiete, (1990).   Google Scholar

[21]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 36 (2011), 21.   Google Scholar

[22]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, (1996).   Google Scholar

[1]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[2]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[3]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[4]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[5]

Maoding Zhen, Jinchun He, Haoyun Xu. Critical system involving fractional Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (1) : 237-253. doi: 10.3934/cpaa.2019013

[6]

Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285

[7]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

[8]

Oliver Díaz-Espinosa, Rafael de la Llave. Renormalization and central limit theorem for critical dynamical systems with weak external noise. Journal of Modern Dynamics, 2007, 1 (3) : 477-543. doi: 10.3934/jmd.2007.1.477

[9]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[10]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[11]

Jianqing Chen. Best constant of 3D Anisotropic Sobolev inequality and its applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 655-666. doi: 10.3934/cpaa.2010.9.655

[12]

Julián Fernández Bonder, Julio D. Rossi. Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Communications on Pure & Applied Analysis, 2002, 1 (3) : 359-378. doi: 10.3934/cpaa.2002.1.359

[13]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[14]

Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517

[15]

Dongsheng Kang, Liangshun Xu. Biharmonic systems involving multiple Rellich-type potentials and critical Rellich-Sobolev nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (2) : 333-346. doi: 10.3934/cpaa.2018019

[16]

Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841

[17]

Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081

[18]

Yanfang Peng. On elliptic systems with Sobolev critical exponent. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3357-3373. doi: 10.3934/dcds.2016.36.3357

[19]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

[20]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (57)

Other articles
by authors

[Back to Top]