• Previous Article
    Systems of singular integral equations and applications to existence of reversed flow solutions of Falkner-Skan equations
  • CPAA Home
  • This Issue
  • Next Article
    Oblique derivative problems for elliptic and parabolic equations
November  2013, 12(6): 2445-2464. doi: 10.3934/cpaa.2013.12.2445

A Brezis-Nirenberg result for non-local critical equations in low dimension

1. 

Dipartimento di Matematica, Università degli Studi della Calabria, Ponte Pietro Bucci 31B, I–87036 Arcavacata di Rende

2. 

Università di Roma Tor Vergata, Dipartimento di Matematica, Via della Ricerca Scientifica, I-00133 Rome

Received  April 2012 Revised  January 2013 Published  May 2013

The present paper is devoted to the study of the following non-local fractional equation involving critical nonlinearities \begin{eqnarray} (-\Delta)^s u-\lambda u=|u|^{2^*-2}u, in \Omega \\ u=0, in R^n\setminus \Omega, \end{eqnarray} where $s\in (0,1)$ is fixed, $(-\Delta )^s$ is the fractional Laplace operator, $\lambda$ is a positive parameter, $2^*$ is the fractional critical Sobolev exponent and $\Omega$ is an open bounded subset of $R^n$, $n>2s$, with Lipschitz boundary. In the recent papers [14, 18, 19] we investigated the existence of non-trivial solutions for this problem when $\Omega$ is an open bounded subset of $R^n$ with $n\geq 4s$ and, in this framework, we prove some existence results. Aim of this paper is to complete the investigation carried on in [14, 18, 19], by considering the case when $2s < n < 4s$. In this context, we prove an existence theorem for our problem, which may be seen as a Brezis-Nirenberg type result in low dimension. In particular when $s=1$ (and consequently $n=3$) our result is the classical result obtained by Brezis and Nirenberg in the famous paper [4]. In this sense the present work may be considered as the extension of some classical results for the Laplacian to the case of non-local fractional operators.
Citation: Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445
References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some critical problems for the fractional Laplacian operator,, J. Differential Equations, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[3]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[4]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[5]

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 2 (1985), 463.   Google Scholar

[6]

M. Comte, Solutions of elliptic equations with critical Sobolev exponent in dimension three,, Nonlinear Anal., 17 (1991), 445.  doi: 10.1016/0362-546X(91)90139-R.  Google Scholar

[7]

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives,, J. Math. Anal. Appl., 295 (2004), 225.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[8]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

O. Druet, Elliptic equations with critical Sobolev exponents in dimension $3$,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 19 (2002), 125.   Google Scholar

[10]

A. Fiscella, Saddle point solutions for non-local elliptic operators,, preprint., ().   Google Scholar

[11]

F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations,, Adv. Differential Equations, 2 (1997), 555.   Google Scholar

[12]

P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 215.   Google Scholar

[13]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Reg. Conf. Ser. Math.}, (1986).   Google Scholar

[14]

R. Servadei, The Yamabe equation in a non-local setting,, preprint, (): 12.   Google Scholar

[15]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, to appear in Rev. Mat. Iberoam., 29 (2013).   Google Scholar

[16]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, J. Math. Anal. Appl., 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[17]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, Discrete Contin. Dyn. Syst., 33 (2013), 2105.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[18]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, to appear in Trans. Amer. Math. Soc., ().   Google Scholar

[19]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent,, preprint, (): 12.   Google Scholar

[20]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Ergebnisse der Mathematik und ihrer Grenzgebiete, (1990).   Google Scholar

[21]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 36 (2011), 21.   Google Scholar

[22]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, (1996).   Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some critical problems for the fractional Laplacian operator,, J. Differential Equations, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[3]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[4]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[5]

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 2 (1985), 463.   Google Scholar

[6]

M. Comte, Solutions of elliptic equations with critical Sobolev exponent in dimension three,, Nonlinear Anal., 17 (1991), 445.  doi: 10.1016/0362-546X(91)90139-R.  Google Scholar

[7]

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives,, J. Math. Anal. Appl., 295 (2004), 225.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[8]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

O. Druet, Elliptic equations with critical Sobolev exponents in dimension $3$,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 19 (2002), 125.   Google Scholar

[10]

A. Fiscella, Saddle point solutions for non-local elliptic operators,, preprint., ().   Google Scholar

[11]

F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations,, Adv. Differential Equations, 2 (1997), 555.   Google Scholar

[12]

P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 215.   Google Scholar

[13]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Reg. Conf. Ser. Math.}, (1986).   Google Scholar

[14]

R. Servadei, The Yamabe equation in a non-local setting,, preprint, (): 12.   Google Scholar

[15]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, to appear in Rev. Mat. Iberoam., 29 (2013).   Google Scholar

[16]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, J. Math. Anal. Appl., 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[17]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, Discrete Contin. Dyn. Syst., 33 (2013), 2105.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[18]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, to appear in Trans. Amer. Math. Soc., ().   Google Scholar

[19]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent,, preprint, (): 12.   Google Scholar

[20]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Ergebnisse der Mathematik und ihrer Grenzgebiete, (1990).   Google Scholar

[21]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 36 (2011), 21.   Google Scholar

[22]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, (1996).   Google Scholar

[1]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[2]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[3]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[4]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[5]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[6]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[7]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021035

[8]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[9]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[11]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[12]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[13]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[14]

Israa Mohammed Khudher, Yahya Ismail Ibrahim, Suhaib Abduljabbar Altamir. Individual biometrics pattern based artificial image analysis techniques. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2020056

[15]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[16]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[17]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[18]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[19]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[20]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (127)
  • HTML views (0)
  • Cited by (91)

Other articles
by authors

[Back to Top]