• Previous Article
    Systems of singular integral equations and applications to existence of reversed flow solutions of Falkner-Skan equations
  • CPAA Home
  • This Issue
  • Next Article
    Oblique derivative problems for elliptic and parabolic equations
November  2013, 12(6): 2445-2464. doi: 10.3934/cpaa.2013.12.2445

A Brezis-Nirenberg result for non-local critical equations in low dimension

1. 

Dipartimento di Matematica, Università degli Studi della Calabria, Ponte Pietro Bucci 31B, I–87036 Arcavacata di Rende

2. 

Università di Roma Tor Vergata, Dipartimento di Matematica, Via della Ricerca Scientifica, I-00133 Rome

Received  April 2012 Revised  January 2013 Published  May 2013

The present paper is devoted to the study of the following non-local fractional equation involving critical nonlinearities \begin{eqnarray} (-\Delta)^s u-\lambda u=|u|^{2^*-2}u, in \Omega \\ u=0, in R^n\setminus \Omega, \end{eqnarray} where $s\in (0,1)$ is fixed, $(-\Delta )^s$ is the fractional Laplace operator, $\lambda$ is a positive parameter, $2^*$ is the fractional critical Sobolev exponent and $\Omega$ is an open bounded subset of $R^n$, $n>2s$, with Lipschitz boundary. In the recent papers [14, 18, 19] we investigated the existence of non-trivial solutions for this problem when $\Omega$ is an open bounded subset of $R^n$ with $n\geq 4s$ and, in this framework, we prove some existence results. Aim of this paper is to complete the investigation carried on in [14, 18, 19], by considering the case when $2s < n < 4s$. In this context, we prove an existence theorem for our problem, which may be seen as a Brezis-Nirenberg type result in low dimension. In particular when $s=1$ (and consequently $n=3$) our result is the classical result obtained by Brezis and Nirenberg in the famous paper [4]. In this sense the present work may be considered as the extension of some classical results for the Laplacian to the case of non-local fractional operators.
Citation: Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445
References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some critical problems for the fractional Laplacian operator,, J. Differential Equations, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[3]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[4]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[5]

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 2 (1985), 463.   Google Scholar

[6]

M. Comte, Solutions of elliptic equations with critical Sobolev exponent in dimension three,, Nonlinear Anal., 17 (1991), 445.  doi: 10.1016/0362-546X(91)90139-R.  Google Scholar

[7]

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives,, J. Math. Anal. Appl., 295 (2004), 225.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[8]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

O. Druet, Elliptic equations with critical Sobolev exponents in dimension $3$,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 19 (2002), 125.   Google Scholar

[10]

A. Fiscella, Saddle point solutions for non-local elliptic operators,, preprint., ().   Google Scholar

[11]

F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations,, Adv. Differential Equations, 2 (1997), 555.   Google Scholar

[12]

P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 215.   Google Scholar

[13]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Reg. Conf. Ser. Math.}, (1986).   Google Scholar

[14]

R. Servadei, The Yamabe equation in a non-local setting,, preprint, (): 12.   Google Scholar

[15]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, to appear in Rev. Mat. Iberoam., 29 (2013).   Google Scholar

[16]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, J. Math. Anal. Appl., 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[17]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, Discrete Contin. Dyn. Syst., 33 (2013), 2105.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[18]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, to appear in Trans. Amer. Math. Soc., ().   Google Scholar

[19]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent,, preprint, (): 12.   Google Scholar

[20]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Ergebnisse der Mathematik und ihrer Grenzgebiete, (1990).   Google Scholar

[21]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 36 (2011), 21.   Google Scholar

[22]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, (1996).   Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[2]

B. Barrios, E. Colorado, A. De Pablo and U. Sanchez, On some critical problems for the fractional Laplacian operator,, J. Differential Equations, 252 (2012), 6133.  doi: 10.1016/j.jde.2012.02.023.  Google Scholar

[3]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[4]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[5]

A. Capozzi, D. Fortunato and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 2 (1985), 463.   Google Scholar

[6]

M. Comte, Solutions of elliptic equations with critical Sobolev exponent in dimension three,, Nonlinear Anal., 17 (1991), 445.  doi: 10.1016/0362-546X(91)90139-R.  Google Scholar

[7]

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives,, J. Math. Anal. Appl., 295 (2004), 225.  doi: 10.1016/j.jmaa.2004.03.034.  Google Scholar

[8]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[9]

O. Druet, Elliptic equations with critical Sobolev exponents in dimension $3$,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 19 (2002), 125.   Google Scholar

[10]

A. Fiscella, Saddle point solutions for non-local elliptic operators,, preprint., ().   Google Scholar

[11]

F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations,, Adv. Differential Equations, 2 (1997), 555.   Google Scholar

[12]

P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 215.   Google Scholar

[13]

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Reg. Conf. Ser. Math.}, (1986).   Google Scholar

[14]

R. Servadei, The Yamabe equation in a non-local setting,, preprint, (): 12.   Google Scholar

[15]

R. Servadei and E. Valdinoci, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators,, to appear in Rev. Mat. Iberoam., 29 (2013).   Google Scholar

[16]

R. Servadei and E. Valdinoci, Mountain Pass solutions for non-local elliptic operators,, J. Math. Anal. Appl., 389 (2012), 887.  doi: 10.1016/j.jmaa.2011.12.032.  Google Scholar

[17]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type,, Discrete Contin. Dyn. Syst., 33 (2013), 2105.  doi: 10.3934/dcds.2013.33.2105.  Google Scholar

[18]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian,, to appear in Trans. Amer. Math. Soc., ().   Google Scholar

[19]

R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent,, preprint, (): 12.   Google Scholar

[20]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Ergebnisse der Mathematik und ihrer Grenzgebiete, (1990).   Google Scholar

[21]

J. Tan, The Brezis-Nirenberg type problem involving the square root of the Laplacian,, Calc. Var. Partial Differential Equations, 36 (2011), 21.   Google Scholar

[22]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and their Applications, (1996).   Google Scholar

[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[5]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[6]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[9]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[10]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[11]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[12]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[15]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[16]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (90)

Other articles
by authors

[Back to Top]