Citation: |
[1] |
D. Applebaum, "Lévy Processes and Stochastic Calculus," Second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009. |
[2] |
J. Bertoin, "Lévy Processes," Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996. |
[3] |
J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media, Statistical mechanics, Models and Physical Applications, Physics Reports, 195 (1990). |
[4] |
L. Caffarelli and L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010), 1903-1930.doi: 10.2307/2152750. |
[5] |
W. Chen, C. Jin, C. Li and C. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and system of integral equations, Disc. Cont. Dyn. Sys., \textbfS (2005), 164-172. |
[6] |
W. Chen and C. Li, Regularity of solutions for a system of integral equations, Comm. Pure Appl. Anal., 4 (2005), 1-8. |
[7] |
W. Chen and C. Li, The best constant in some weighted Hardy-Littlewood-Sobolev inequality, Proc. AMS, 136 (2008), 955-962. |
[8] |
W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Mathematica Scientia, 4 (2009), 949-960.doi: 10.1016/S0252-9602(09)60079-5. |
[9] |
W. Chen and C. Li, An integral system and the Lane-Emden conjecture, Disc. Cont. Dyn. Sys., 4 (2009), 1167-1184. |
[10] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: 10.1215/S0012-7094-91-06325-8. |
[11] |
W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type, Disc. Cont. Dyn. Sys., 30 (2011), 1083-1093.doi: 10.3934/dcds.2011.30.1083. |
[12] |
W. Chen and C. Li, Methods on nonlinear elliptic equations, AIMS Book Series on Diff. Equa. & Dyn. Sys., 4 (2010). |
[13] |
W. Chen and C. Li, A sup + inf inequality near R = 0, Advances in Math, 220 (2009), 219-245.doi: 10.1016/j.aim.2008.09.005. |
[14] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., LLVIII (2005), 1-14. |
[15] |
W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Sys., 12 (2005), 347-354. |
[16] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. PDEs., 30 (2005), 59-65.doi: 10.1081/PDE-200044445. |
[17] |
P. Constantin, Euler equations, Navier-Stokes equations and turbulence, In "Mathematical Foundation of Turbulent Viscous Flows," Vol. 1871 of Lecture Notes in Math. 1?3, Springer, Berlin, 2006. |
[18] |
R. Cont and P. Tankov, "Financial Modelling with Jump Processes," Chapman & Hall/CRC Financial Mathematics Series, Boca Raton, Fl, 2004. |
[19] |
W. Chen and J. Zhu, Radial symmetry and regularity of solutions for poly-harmonic Drichlet problems, J. Math. Anal. Appl., 377 (2011), 744-753.doi: 10.1016/j.jmaa.2010.11.035. |
[20] |
Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012), 2835-2867.doi: 10.1016/j.aim.2012.01.018. |
[21] |
F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373-383. |
[22] |
X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potentials, Comm. Pure. Appl. Anal., 10 (2011), 1111-1119.doi: 10.3934/cpaa.2011.10.1111. |
[23] |
F. Hang, X. Wang and X. Yan, An integral equation in conformal geometry, Ann. H. Poincare Nonl. Anal., 26 (2009), 1-21.doi: 10.1016/j.anihpc.2007.03.006. |
[24] |
C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. AMS, 134 (2006), 1661-1670. |
[25] |
C. Jin and C. Li, Quantitative analysis of some system of integral equations, Cal. Var. & PDEs, 26 (2006), 447-457.doi: 10.1007/s00526-006-0013-5. |
[26] |
J. Liu, Y. Guo and Y. Zhang, Liouville-type Theorem for polyharmoic systems in $R^n$, J. Diff. Equa., 225 (2006), 685-709.doi: 10.1016/j.jde.2005.10.016. |
[27] |
E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349-374.doi: 10.2307/2007032. |
[28] |
E. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math, 57 (1977), 93-105. |
[29] |
S. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonl. Anal: Theory, Methods & Appl., 71 (2009), 1796-1806. |
[30] |
C. Lin, A classification of solutions of a conformally invariant fourth order equation in $R^n$, Comment. Math. Helv., 73 (1998), 206-231.doi: 10.1007/s000140050052. |
[31] |
Y. Li, Remarks on some conformally invariant integral equations: the method of moving spheres, J. Euro. Math. Soc., 6 (2004), 153-180.doi: 10.4171/JEMS/6. |
[32] |
C. Li and J. Lim, The singularity analysis of solutions to some integral equations, Comm. Pure Appl. Anal., 6 (2007), 453-464.doi: 10.3934/cpaa.2007.6.453. |
[33] |
Y. Lei, C. Li and Chao Ma, Asymptotic radial symmetry and growth estimates of positive solutions to the weighted HLS system, Cal. Var. & PDE, 45 (2012), 43-61.doi: 10.1007/s00526-011-0450-7. |
[34] |
C. Li and L. Ma, Uniqueness of positive bound states to Shrodinger systems with critical exponents, SIAM J. of Appl. Anal., 40 (2008), 1049-1057.doi: 10.1137/080712301. |
[35] |
C. Liu and S. Qiao, Symmetry and monotonicity for a system of integral equations, Comm. Pure Appl. Anal., 6 (2009), 1925-1932.doi: 10.3934/cpaa.2009.8.1925. |
[36] |
D. Li, G. Strohmer and L. Wang, Symmetry of integral equations on bounded domains, Proc. AMS, 137 (2009), 3695-3702.doi: 10.1090/S0002-9939-09-09987-0. |
[37] |
D. Li and R. Zhuo, An integral equation on half space, Proc. AMS, 138 (2010), 2779-2791. |
[38] |
A. Majda, D. McLaughlin and E. Tabak, A one-dimensional model for dispersive wave turbulence, J. Nonl. Sci., 7 (1997), 9-44.doi: 10.1007/BF02679124. |
[39] |
L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure Appl. Anal., 5 (2006), 855-859.doi: 10.3934/cpaa.2006.5.855. |
[40] |
L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl., 2 (2008), 943-949.doi: 10.1016/j.jmaa.2007.12.064. |
[41] |
L. Ma and D. Chen, Radial symmetry and uniqueness of non-negative solutions to an integral system, Math. and Computer Modelling, 49 (2009), 379-385.doi: 10.1016/j.mcm.2008.06.010. |
[42] |
C. Ma, W. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adances in Math., 3 (2011), 2676-2699.doi: 10.1016/j.aim.2010.07.020. |
[43] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rat. Mech. Anal., 2 (2010) 455-467.doi: 10.1007/s00205-008-0208-3. |
[44] |
J. Qing and D. Raske, On positive solutions to semilinear conformally invariant equations on locally conformally flat manifolds, International Mathematics Research Notices, Vol. 2006, Article ID 94172, 1-20. |
[45] |
V. Tarasov and G. Zaslasvky, Fractional dynamics of systems with long-range interaction, Comm. Nonl. Sci. Numer. Simul., 11 (2006), 885-889.doi: 10.1016/j.cnsns.2006.03.005. |
[46] |
J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.doi: 10.1007/s002080050258. |
[47] |
X. Yan, Liouville-type theorem for a higher order elliptic system, JMAA, 387 (2012), 153-165. |