[1]

P. Amorim, M. BenArtzi and P. G. LeFloch, Hyperbolic conservation laws on manifolds: Total variation estimates and the finite volume method, Methods Appl. Anal., 12 (2005), 291324.

[2]

P. Amorim, P. G. LeFloch and W. Neves, A geometric approach to error estimates for conservation laws posed on a spacetime, Nonlinear Anal., 74 (2011), 48984917.

[3]

D. Bleecker and G. Csordas, "Basic Partial Differential Equations," International Press: Boston, 1996.

[4]

G.Q. Chen, C. M. Dafermos, M. Slemrod and D. Wang, On twodimensional sonicsubsonic flow, Comm. Math. Phys., 271 (2007), 635647.

[5]

G.Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type, J. Amer. Math. Soc., 16 (2003), 461494.

[6]

G.Q. Chen and M. Feldman, Steady transonic shocks and free boundary problems in infinite cylinders for the Euler equations, Comm. Pure Appl. Math., 57 (2004), 310356.

[7]

G.Q. Chen and M. Feldman, Existence and stability of multidimensional transonic flows through an infinite nozzle of arbitrary crosssections, Arch. Rational Mech. Anal., 184 (2007), 185242.

[8]

G.Q. Chen, J. Chen and M. Feldman, Transonic shocks and free boundary problems for the full Euler equations in infinite nozzles, J. Math. Pures Appl., 88 (2007), 191218.

[9]

S. Chen and H. Yuan, Transonic shocks in compressible flow passing a duct for threedimensional Euler systems, Arch. Rational Mech. Anal., 187 (2008), 523556.

[10]

R. Courant and K. O. Friedrichs, "Supersonic Flow and Shock Waves," Interscience Publishers Inc., New York, 1948.

[11]

C. M. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics," SpringerVerlag, New York, 2000.

[12]

T. Frankel, "The Geometry of Physicist, An Introduction," 2nd Ed., Cambridge University Press, Cambridge, 2004.

[13]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," 2nd Edition, SpringerVerlag, BerlinNew York, 1983.

[14]

T.T. Li, "Global Classical Solutions for Quasilinear Hyperbolic Systems," John Wiley & Sons, Masson, Paris, 1994.

[15]

L. Liu and H. Yuan, Stability of cylindrical transonic shocks for twodimensional steady compressible Euler system, J. Hyper. Diff. Equ., 5 (2008), 347379.

[16]

Y. Luo and N. S. Trudinger, Linear second order elliptic equations with venttsel boundary conditions, Proc. Royal Soc. Edinburgh, 118A (1991), 193207.

[17]

L. M. Sibner and R. J. Sibner, Transonic flows on axially symmetric torus, J. Math. Anal. Appl., 72 (1979), 362382.

[18]

M. Taylor, "Partial Differential Equations," Vol. 3, SpringerVerlag, New York, 1996.

[19]

B. Whitham, "Linear and Nonlinear Waves," John Wiley, New York, 1974.

[20]

H. Yuan, Examples of steady subsonic flows in a convergentdivergent approximate nozzle, J. Diff. Eqs., 244 (2008), 16751691.

[21]

H. Yuan, On transonic shocks in twodimensional variablearea ducts for steady Euler system, SIAM J. Math. Anal., 38 (2006), 13431370.

[22]

H. Yuan, A remark on determination of transonic shocks in divergent nozzles for steady compressible Euler flows, Nonlinear Analysis: Real World Appl., 9 (2008), 316325.
