• Previous Article
    Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation
  • CPAA Home
  • This Issue
  • Next Article
    Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations
November  2013, 12(6): 2543-2564. doi: 10.3934/cpaa.2013.12.2543

Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations

1. 

Pohang Mathematics Institute, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea

2. 

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China

Received  June 2012 Revised  March 2013 Published  May 2013

In this paper, we consider the properties of the vacuum states for weak solutions to one-dimensional full compressible Navier-Stokes system with viscosity and heat conductivities for general equation of states. Under weak conditions on initial data, we prove that if there is no vacuum initially then the vacuum states do not occur in a finite time. In particular, the temperature variation has no immediate effects on the formation of the vacuum. There are no assumptions on density in large sets. Furthermore, we prove that two initially non interacting vacuum regions will never touch in the future.
Citation: Ben Duan, Zhen Luo. Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2543-2564. doi: 10.3934/cpaa.2013.12.2543
References:
[1]

A. Amosov and A. Zlotnik, A semidiscrete method for solving equations of the one dimensional motion of a non homogeneous viscous heat conducting gas with nonsmooth data,, Izv. Vyssh. Uchebn. Zaved. Mat., 41 (1997), 3.   Google Scholar

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl., 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[3]

T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Longman Scientific and Technical, (1989).   Google Scholar

[4]

G. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data,, Comm. Partial Differential Equations, 25 (2000), 2233.   Google Scholar

[5]

G. Chen and J. Glimm, Global solutions to the compressible Euler equations with geometrical structure,, Comm. Math. Phys., 180 (1996), 153.  doi: 10.1007/BF02101185.  Google Scholar

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum,, J. Differential Equations, 228 (2006), 377.  doi: 10.1016/j.jde.2006.05.001.  Google Scholar

[7]

R. Duan and Y. Zhao, A note on the non-formation of vacuum states for compressible Navier-Stokes equations,, J. Math. Anal. Appl., 311 (2005), 744.  doi: 10.1016/j.jmaa.2005.02.065.  Google Scholar

[8]

D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension,, Comm. Pure Appl. Anal., 3 (2004), 675.  doi: 10.3934/cpaa.2004.3.675.  Google Scholar

[9]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004).   Google Scholar

[10]

H. Fujita-Yashima, M. Padula and A. Novotny, équation monodimensionnelle d'un gaz vizqueux et calorifére avec des conditions initiales moins restrictives,, Ric. Mat., 42 (1993), 199.   Google Scholar

[11]

D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data,, J. Differential Equations, 95 (1992), 33.  doi: 10.1016/0022-0396(92)90042-L.  Google Scholar

[12]

D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow,, Arch. Ration. Mech. Anal., 114 (1991), 15.  doi: 10.1007/BF00375683.  Google Scholar

[13]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887.  doi: 10.1137/0151043.  Google Scholar

[14]

D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations,, Comm. Math. Phys., 216 (2001), 255.  doi: 10.1007/s002200000322.  Google Scholar

[15]

X. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, preprint,, \arXiv{1107.4655}., ().   Google Scholar

[16]

X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations,, Comm. Pure Appl. Math., 65 (2012), 549.  doi: 10.1002/cpa.21382.  Google Scholar

[17]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559.  doi: 10.1007/PL00005543.  Google Scholar

[18]

S. Jiang and P. Zhang, Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas,, Quart. Appl. Math., 61 (2003), 435.   Google Scholar

[19]

Y. Kanel, The Cauchy problem for equations of gas dynamics with viscosity,, Siberian Math. J., 20 (1979), 208.   Google Scholar

[20]

A. Kazhikhov, On the Cauchy problem for the equations of a viscous gas,, Siberian Math. J., 23 (1982), 44.  doi: 10.1007/BF00971419.  Google Scholar

[21]

A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.  doi: 10.1016/0021-8928(77)90011-9.  Google Scholar

[22]

H. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations,, Comm. Math. Phys., 281 (2008), 401.  doi: 10.1007/s00220-008-0495-4.  Google Scholar

[23]

P. Lions, "Mathematical Topics in Fluid Mechanics. II. Compressible Models,", The Clarendon Press, (1998).   Google Scholar

[24]

T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175.  doi: 10.1137/S0036141097331044.  Google Scholar

[25]

Z. Luo, Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum,, Comm. Math. Sci., 10 (2012), 527.   Google Scholar

[26]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[27]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général,, Bull. Soc. Math. France., 90 (1962), 487.   Google Scholar

[28]

J. Serrin, On the uniqueness of compressible fluid motions,, Arch. Ration. Mech. Anal., 3 (1959), 271.  doi: 10.1007/BF00284180.  Google Scholar

[29]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229.   Google Scholar

[30]

Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations,, J. Hyperbolic Differential Equations, 3 (2006), 403.  doi: 10.1142/S0219891606000847.  Google Scholar

show all references

References:
[1]

A. Amosov and A. Zlotnik, A semidiscrete method for solving equations of the one dimensional motion of a non homogeneous viscous heat conducting gas with nonsmooth data,, Izv. Vyssh. Uchebn. Zaved. Mat., 41 (1997), 3.   Google Scholar

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl., 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[3]

T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Longman Scientific and Technical, (1989).   Google Scholar

[4]

G. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data,, Comm. Partial Differential Equations, 25 (2000), 2233.   Google Scholar

[5]

G. Chen and J. Glimm, Global solutions to the compressible Euler equations with geometrical structure,, Comm. Math. Phys., 180 (1996), 153.  doi: 10.1007/BF02101185.  Google Scholar

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum,, J. Differential Equations, 228 (2006), 377.  doi: 10.1016/j.jde.2006.05.001.  Google Scholar

[7]

R. Duan and Y. Zhao, A note on the non-formation of vacuum states for compressible Navier-Stokes equations,, J. Math. Anal. Appl., 311 (2005), 744.  doi: 10.1016/j.jmaa.2005.02.065.  Google Scholar

[8]

D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension,, Comm. Pure Appl. Anal., 3 (2004), 675.  doi: 10.3934/cpaa.2004.3.675.  Google Scholar

[9]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004).   Google Scholar

[10]

H. Fujita-Yashima, M. Padula and A. Novotny, équation monodimensionnelle d'un gaz vizqueux et calorifére avec des conditions initiales moins restrictives,, Ric. Mat., 42 (1993), 199.   Google Scholar

[11]

D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data,, J. Differential Equations, 95 (1992), 33.  doi: 10.1016/0022-0396(92)90042-L.  Google Scholar

[12]

D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow,, Arch. Ration. Mech. Anal., 114 (1991), 15.  doi: 10.1007/BF00375683.  Google Scholar

[13]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887.  doi: 10.1137/0151043.  Google Scholar

[14]

D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations,, Comm. Math. Phys., 216 (2001), 255.  doi: 10.1007/s002200000322.  Google Scholar

[15]

X. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, preprint,, \arXiv{1107.4655}., ().   Google Scholar

[16]

X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations,, Comm. Pure Appl. Math., 65 (2012), 549.  doi: 10.1002/cpa.21382.  Google Scholar

[17]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559.  doi: 10.1007/PL00005543.  Google Scholar

[18]

S. Jiang and P. Zhang, Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas,, Quart. Appl. Math., 61 (2003), 435.   Google Scholar

[19]

Y. Kanel, The Cauchy problem for equations of gas dynamics with viscosity,, Siberian Math. J., 20 (1979), 208.   Google Scholar

[20]

A. Kazhikhov, On the Cauchy problem for the equations of a viscous gas,, Siberian Math. J., 23 (1982), 44.  doi: 10.1007/BF00971419.  Google Scholar

[21]

A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.  doi: 10.1016/0021-8928(77)90011-9.  Google Scholar

[22]

H. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations,, Comm. Math. Phys., 281 (2008), 401.  doi: 10.1007/s00220-008-0495-4.  Google Scholar

[23]

P. Lions, "Mathematical Topics in Fluid Mechanics. II. Compressible Models,", The Clarendon Press, (1998).   Google Scholar

[24]

T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175.  doi: 10.1137/S0036141097331044.  Google Scholar

[25]

Z. Luo, Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum,, Comm. Math. Sci., 10 (2012), 527.   Google Scholar

[26]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[27]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général,, Bull. Soc. Math. France., 90 (1962), 487.   Google Scholar

[28]

J. Serrin, On the uniqueness of compressible fluid motions,, Arch. Ration. Mech. Anal., 3 (1959), 271.  doi: 10.1007/BF00284180.  Google Scholar

[29]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229.   Google Scholar

[30]

Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations,, J. Hyperbolic Differential Equations, 3 (2006), 403.  doi: 10.1142/S0219891606000847.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[4]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[7]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[8]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[9]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[13]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[16]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]