Citation: |
[1] |
A. Amosov and A. Zlotnik, A semidiscrete method for solving equations of the one dimensional motion of a non homogeneous viscous heat conducting gas with nonsmooth data, Izv. Vyssh. Uchebn. Zaved. Mat., 41 (1997), 3-19. |
[2] |
D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl., 87 (2007), 57-90.doi: 10.1016/j.matpur.2006.11.001. |
[3] |
T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics," Longman Scientific and Technical, Harlow; copublished in the United States with John Wiley and Sons, Inc., New York, 1989. |
[4] |
G. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data, Comm. Partial Differential Equations, 25 (2000), 2233-2257. |
[5] |
G. Chen and J. Glimm, Global solutions to the compressible Euler equations with geometrical structure, Comm. Math. Phys., 180 (1996), 153-193.doi: 10.1007/BF02101185. |
[6] |
Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations, 228 (2006), 377-411.doi: 10.1016/j.jde.2006.05.001. |
[7] |
R. Duan and Y. Zhao, A note on the non-formation of vacuum states for compressible Navier-Stokes equations, J. Math. Anal. Appl., 311 (2005), 744-754.doi: 10.1016/j.jmaa.2005.02.065. |
[8] |
D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension, Comm. Pure Appl. Anal., 3 (2004), 675-694.doi: 10.3934/cpaa.2004.3.675. |
[9] |
E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford University Press, Oxford, 2004. |
[10] |
H. Fujita-Yashima, M. Padula and A. Novotny, équation monodimensionnelle d'un gaz vizqueux et calorifére avec des conditions initiales moins restrictives, Ric. Mat., 42 (1993), 199-248. |
[11] |
D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data, J. Differential Equations, 95 (1992), 33-74.doi: 10.1016/0022-0396(92)90042-L. |
[12] |
D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow, Arch. Ration. Mech. Anal., 114 (1991), 15-46.doi: 10.1007/BF00375683. |
[13] |
D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow, SIAM J. Appl. Math., 51 (1991), 887-898.doi: 10.1137/0151043. |
[14] |
D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations, Comm. Math. Phys., 216 (2001), 255-276.doi: 10.1007/s002200000322. |
[15] |
X. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, preprint, arXiv:1107.4655. |
[16] |
X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.doi: 10.1002/cpa.21382. |
[17] |
S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Comm. Math. Phys., 215 (2001), 559-581.doi: 10.1007/PL00005543. |
[18] |
S. Jiang and P. Zhang, Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas, Quart. Appl. Math., 61 (2003), 435-449. |
[19] |
Y. Kanel, The Cauchy problem for equations of gas dynamics with viscosity, Siberian Math. J., 20 (1979), 208-218. |
[20] |
A. Kazhikhov, On the Cauchy problem for the equations of a viscous gas, Siberian Math. J., 23 (1982), 44-49.doi: 10.1007/BF00971419. |
[21] |
A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.doi: 10.1016/0021-8928(77)90011-9. |
[22] |
H. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations, Comm. Math. Phys., 281 (2008), 401-444.doi: 10.1007/s00220-008-0495-4. |
[23] |
P. Lions, "Mathematical Topics in Fluid Mechanics. II. Compressible Models," The Clarendon Press, Oxford University Press, New York, 1998. |
[24] |
T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum, SIAM J. Math. Anal., 31 (2000), 1175-1191.doi: 10.1137/S0036141097331044. |
[25] |
Z. Luo, Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum, Comm. Math. Sci., 10 (2012), 527-554. |
[26] |
A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, Math. Kyoto Univ., 20 (1980), 67-104. |
[27] |
J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France., 90 (1962), 487-497. |
[28] |
J. Serrin, On the uniqueness of compressible fluid motions, Arch. Ration. Mech. Anal., 3 (1959), 271-288.doi: 10.1007/BF00284180. |
[29] |
Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240. |
[30] |
Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations, J. Hyperbolic Differential Equations, 3 (2006), 403-442.doi: 10.1142/S0219891606000847. |