• Previous Article
    Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation
  • CPAA Home
  • This Issue
  • Next Article
    Local uniqueness of steady spherical transonic shock-fronts for the three--dimensional full Euler equations
November  2013, 12(6): 2543-2564. doi: 10.3934/cpaa.2013.12.2543

Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations

1. 

Pohang Mathematics Institute, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea

2. 

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China

Received  June 2012 Revised  March 2013 Published  May 2013

In this paper, we consider the properties of the vacuum states for weak solutions to one-dimensional full compressible Navier-Stokes system with viscosity and heat conductivities for general equation of states. Under weak conditions on initial data, we prove that if there is no vacuum initially then the vacuum states do not occur in a finite time. In particular, the temperature variation has no immediate effects on the formation of the vacuum. There are no assumptions on density in large sets. Furthermore, we prove that two initially non interacting vacuum regions will never touch in the future.
Citation: Ben Duan, Zhen Luo. Dynamics of vacuum states for one-dimensional full compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2543-2564. doi: 10.3934/cpaa.2013.12.2543
References:
[1]

A. Amosov and A. Zlotnik, A semidiscrete method for solving equations of the one dimensional motion of a non homogeneous viscous heat conducting gas with nonsmooth data,, Izv. Vyssh. Uchebn. Zaved. Mat., 41 (1997), 3. Google Scholar

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl., 87 (2007), 57. doi: 10.1016/j.matpur.2006.11.001. Google Scholar

[3]

T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Longman Scientific and Technical, (1989). Google Scholar

[4]

G. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data,, Comm. Partial Differential Equations, 25 (2000), 2233. Google Scholar

[5]

G. Chen and J. Glimm, Global solutions to the compressible Euler equations with geometrical structure,, Comm. Math. Phys., 180 (1996), 153. doi: 10.1007/BF02101185. Google Scholar

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum,, J. Differential Equations, 228 (2006), 377. doi: 10.1016/j.jde.2006.05.001. Google Scholar

[7]

R. Duan and Y. Zhao, A note on the non-formation of vacuum states for compressible Navier-Stokes equations,, J. Math. Anal. Appl., 311 (2005), 744. doi: 10.1016/j.jmaa.2005.02.065. Google Scholar

[8]

D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension,, Comm. Pure Appl. Anal., 3 (2004), 675. doi: 10.3934/cpaa.2004.3.675. Google Scholar

[9]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004). Google Scholar

[10]

H. Fujita-Yashima, M. Padula and A. Novotny, équation monodimensionnelle d'un gaz vizqueux et calorifére avec des conditions initiales moins restrictives,, Ric. Mat., 42 (1993), 199. Google Scholar

[11]

D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data,, J. Differential Equations, 95 (1992), 33. doi: 10.1016/0022-0396(92)90042-L. Google Scholar

[12]

D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow,, Arch. Ration. Mech. Anal., 114 (1991), 15. doi: 10.1007/BF00375683. Google Scholar

[13]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887. doi: 10.1137/0151043. Google Scholar

[14]

D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations,, Comm. Math. Phys., 216 (2001), 255. doi: 10.1007/s002200000322. Google Scholar

[15]

X. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, preprint,, \arXiv{1107.4655}., (). Google Scholar

[16]

X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations,, Comm. Pure Appl. Math., 65 (2012), 549. doi: 10.1002/cpa.21382. Google Scholar

[17]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559. doi: 10.1007/PL00005543. Google Scholar

[18]

S. Jiang and P. Zhang, Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas,, Quart. Appl. Math., 61 (2003), 435. Google Scholar

[19]

Y. Kanel, The Cauchy problem for equations of gas dynamics with viscosity,, Siberian Math. J., 20 (1979), 208. Google Scholar

[20]

A. Kazhikhov, On the Cauchy problem for the equations of a viscous gas,, Siberian Math. J., 23 (1982), 44. doi: 10.1007/BF00971419. Google Scholar

[21]

A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273. doi: 10.1016/0021-8928(77)90011-9. Google Scholar

[22]

H. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations,, Comm. Math. Phys., 281 (2008), 401. doi: 10.1007/s00220-008-0495-4. Google Scholar

[23]

P. Lions, "Mathematical Topics in Fluid Mechanics. II. Compressible Models,", The Clarendon Press, (1998). Google Scholar

[24]

T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175. doi: 10.1137/S0036141097331044. Google Scholar

[25]

Z. Luo, Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum,, Comm. Math. Sci., 10 (2012), 527. Google Scholar

[26]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, Math. Kyoto Univ., 20 (1980), 67. Google Scholar

[27]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général,, Bull. Soc. Math. France., 90 (1962), 487. Google Scholar

[28]

J. Serrin, On the uniqueness of compressible fluid motions,, Arch. Ration. Mech. Anal., 3 (1959), 271. doi: 10.1007/BF00284180. Google Scholar

[29]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229. Google Scholar

[30]

Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations,, J. Hyperbolic Differential Equations, 3 (2006), 403. doi: 10.1142/S0219891606000847. Google Scholar

show all references

References:
[1]

A. Amosov and A. Zlotnik, A semidiscrete method for solving equations of the one dimensional motion of a non homogeneous viscous heat conducting gas with nonsmooth data,, Izv. Vyssh. Uchebn. Zaved. Mat., 41 (1997), 3. Google Scholar

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl., 87 (2007), 57. doi: 10.1016/j.matpur.2006.11.001. Google Scholar

[3]

T. Chang and L. Hsiao, "The Riemann Problem and Interaction of Waves in Gas Dynamics,", Longman Scientific and Technical, (1989). Google Scholar

[4]

G. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data,, Comm. Partial Differential Equations, 25 (2000), 2233. Google Scholar

[5]

G. Chen and J. Glimm, Global solutions to the compressible Euler equations with geometrical structure,, Comm. Math. Phys., 180 (1996), 153. doi: 10.1007/BF02101185. Google Scholar

[6]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum,, J. Differential Equations, 228 (2006), 377. doi: 10.1016/j.jde.2006.05.001. Google Scholar

[7]

R. Duan and Y. Zhao, A note on the non-formation of vacuum states for compressible Navier-Stokes equations,, J. Math. Anal. Appl., 311 (2005), 744. doi: 10.1016/j.jmaa.2005.02.065. Google Scholar

[8]

D. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension,, Comm. Pure Appl. Anal., 3 (2004), 675. doi: 10.3934/cpaa.2004.3.675. Google Scholar

[9]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford University Press, (2004). Google Scholar

[10]

H. Fujita-Yashima, M. Padula and A. Novotny, équation monodimensionnelle d'un gaz vizqueux et calorifére avec des conditions initiales moins restrictives,, Ric. Mat., 42 (1993), 199. Google Scholar

[11]

D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data,, J. Differential Equations, 95 (1992), 33. doi: 10.1016/0022-0396(92)90042-L. Google Scholar

[12]

D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow,, Arch. Ration. Mech. Anal., 114 (1991), 15. doi: 10.1007/BF00375683. Google Scholar

[13]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887. doi: 10.1137/0151043. Google Scholar

[14]

D. Hoff and J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations,, Comm. Math. Phys., 216 (2001), 255. doi: 10.1007/s002200000322. Google Scholar

[15]

X. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations, preprint,, \arXiv{1107.4655}., (). Google Scholar

[16]

X. Huang, J. Li and Z. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations,, Comm. Pure Appl. Math., 65 (2012), 549. doi: 10.1002/cpa.21382. Google Scholar

[17]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559. doi: 10.1007/PL00005543. Google Scholar

[18]

S. Jiang and P. Zhang, Global weak solutions to the Navier-Stokes equations for a 1D viscous polytropic ideal gas,, Quart. Appl. Math., 61 (2003), 435. Google Scholar

[19]

Y. Kanel, The Cauchy problem for equations of gas dynamics with viscosity,, Siberian Math. J., 20 (1979), 208. Google Scholar

[20]

A. Kazhikhov, On the Cauchy problem for the equations of a viscous gas,, Siberian Math. J., 23 (1982), 44. doi: 10.1007/BF00971419. Google Scholar

[21]

A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273. doi: 10.1016/0021-8928(77)90011-9. Google Scholar

[22]

H. Li, J. Li and Z. Xin, Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations,, Comm. Math. Phys., 281 (2008), 401. doi: 10.1007/s00220-008-0495-4. Google Scholar

[23]

P. Lions, "Mathematical Topics in Fluid Mechanics. II. Compressible Models,", The Clarendon Press, (1998). Google Scholar

[24]

T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM J. Math. Anal., 31 (2000), 1175. doi: 10.1137/S0036141097331044. Google Scholar

[25]

Z. Luo, Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum,, Comm. Math. Sci., 10 (2012), 527. Google Scholar

[26]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, Math. Kyoto Univ., 20 (1980), 67. Google Scholar

[27]

J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général,, Bull. Soc. Math. France., 90 (1962), 487. Google Scholar

[28]

J. Serrin, On the uniqueness of compressible fluid motions,, Arch. Ration. Mech. Anal., 3 (1959), 271. doi: 10.1007/BF00284180. Google Scholar

[29]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229. Google Scholar

[30]

Z. Xin and H. Yuan, Vacuum state for spherically symmetric solutions of the compressible Navier-Stokes equations,, J. Hyperbolic Differential Equations, 3 (2006), 403. doi: 10.1142/S0219891606000847. Google Scholar

[1]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[2]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[3]

Changjiang Zhu, Ruizhao Zi. Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1263-1283. doi: 10.3934/dcds.2011.30.1263

[4]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

[5]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[6]

Ping Chen, Ting Zhang. A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients. Communications on Pure & Applied Analysis, 2008, 7 (4) : 987-1016. doi: 10.3934/cpaa.2008.7.987

[7]

Yuming Qin, Lan Huang, Shuxian Deng, Zhiyong Ma, Xiaoke Su, Xinguang Yang. Interior regularity of the compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 163-192. doi: 10.3934/dcdss.2009.2.163

[8]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[9]

Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567

[10]

Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic & Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409

[11]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[12]

Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure & Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459

[13]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[14]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[15]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[16]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137

[17]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[18]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[19]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[20]

Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]