November  2013, 12(6): 2565-2575. doi: 10.3934/cpaa.2013.12.2565

Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation

1. 

Department of Mathematics, South China University of Technology, Guangzhou, 510640, China

2. 

Department of Mathematics, South China University of Technology, Guangzhou 510640

Received  July 2012 Revised  January 2013 Published  May 2013

Some critical Sobolev-Hardy inequalities with weight of distance function $d^{\frac{\alpha}{p}p^*}$ are established in a bounded domain $\Omega$, where $d$ is the distance to the boundary $\partial\Omega$. Using these inequalities we get the result that the embedding $\mathcal{D}^{1, 2}(\Omega, d^\alpha)\hookrightarrow L^q(\Omega, d^{\beta})$ is compact if $1\leq q<2^*$ and $\beta >\frac{\alpha}{2}q+\frac{q}{2^*}-1$. By the compactness result and critical-point theory about sign-changing solutions, we obtain infinitely many sign-changing solutions to a degenerate Dirichlet elliptic equation $-\hbox{div}(d^\alpha \nabla u)- \frac{(1-\alpha )^2}{4} d^{\alpha-2} u=f(x,u)$ provided that $f(x,u)$ satisfies suitable conditions.
Citation: Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565
References:
[1]

G. H. Hardy, Note on a theorem of Hilbert,, Mathematische Zeitschrift, 6 (1920), 314.   Google Scholar

[2]

H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems,, Revista Matem$\acutea$tica de la Universidad Complutense de madrid, 10 (1997), 443.   Google Scholar

[3]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms,, Transactions of the American Mathematical Society, 356 (2004), 2149.   Google Scholar

[4]

Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application,, Proceedings of the American Mathematical Society, 130 (2002), 489.   Google Scholar

[5]

Adimurthi and M. J. Esteban, An improved Hardy-Sobolev inequality in $W^{1,p}$ and its application to Schrödinger operators,, Nonlinear Differential Equatons and Applications, 12 (2005), 243.   Google Scholar

[6]

B. Abdellaoui, E. Colorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities,, Calculus of Variations and Partial Differential Equations, 23 (2005), 327.   Google Scholar

[7]

Y. T. Shen, The Dirichlet problem for degenerate or singular elliptic equation of high order,, Journal of China University of Science and Technology, 10 (1980), 1.   Google Scholar

[8]

Y. T. Shen and X. K. Guo, Weighted Poincaré inequalities on unbounded domains and nonlinear elliptic boundary value problems,, Acta Mathematica Scientia, 4 (1984), 277.   Google Scholar

[9]

G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants,, Trans. Amer. Math. Soc., 356 (2004), 2169.   Google Scholar

[10]

H. Brezis and M. Marcus, Hardy's inequalities revisited,, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, 25 (1997), 217.   Google Scholar

[11]

S. Filippas, V. G. Maz'ya and A. Tertikas, On a question of Brezis and marcus,, Calc. of Variations and P.D.E., 25 (2006), 491.   Google Scholar

[12]

S. Filippas, V. G. Maz'ya and A. Tertikas, Critical Hardy-Sobolev Inequalities,, Journal de Math$\acutee$matiques Pures et Appliqu$\acutee$es, 87 (2007), 37.   Google Scholar

[13]

J. Dávila and L. Dupaigne, Hardy-type inequalities,, J. Eur. Math. Soc., 6 (2004), 335.   Google Scholar

[14]

M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators,, Annali Mat. Pura Appl., 80 (1968), 1.   Google Scholar

[15]

A. Kristály and C. Varga, Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity,, J. Math. Anal. Appl., 352 (2009), 139.   Google Scholar

[16]

Y. M. Chen, Regularity of solutions to the Dirichlet problem for degenerate elliptic equation,, Chin. Ann. Math., 24 (2003), 529.   Google Scholar

[17]

Y. T. Shen and Y. X. Yao, Nonlinear elliptic equations with critical potential and critical parameter,, Proceedings of the Royal Society of Edinburgh, 136 (2006), 1041.   Google Scholar

[18]

M. M. Zou, "Sign-Changing Critical Point Theory,", Springer-Verlag, (2008).   Google Scholar

[19]

E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities,, Courant Lecture Notes in Mathematics, 5 (1999).   Google Scholar

show all references

References:
[1]

G. H. Hardy, Note on a theorem of Hilbert,, Mathematische Zeitschrift, 6 (1920), 314.   Google Scholar

[2]

H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems,, Revista Matem$\acutea$tica de la Universidad Complutense de madrid, 10 (1997), 443.   Google Scholar

[3]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms,, Transactions of the American Mathematical Society, 356 (2004), 2149.   Google Scholar

[4]

Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application,, Proceedings of the American Mathematical Society, 130 (2002), 489.   Google Scholar

[5]

Adimurthi and M. J. Esteban, An improved Hardy-Sobolev inequality in $W^{1,p}$ and its application to Schrödinger operators,, Nonlinear Differential Equatons and Applications, 12 (2005), 243.   Google Scholar

[6]

B. Abdellaoui, E. Colorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities,, Calculus of Variations and Partial Differential Equations, 23 (2005), 327.   Google Scholar

[7]

Y. T. Shen, The Dirichlet problem for degenerate or singular elliptic equation of high order,, Journal of China University of Science and Technology, 10 (1980), 1.   Google Scholar

[8]

Y. T. Shen and X. K. Guo, Weighted Poincaré inequalities on unbounded domains and nonlinear elliptic boundary value problems,, Acta Mathematica Scientia, 4 (1984), 277.   Google Scholar

[9]

G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants,, Trans. Amer. Math. Soc., 356 (2004), 2169.   Google Scholar

[10]

H. Brezis and M. Marcus, Hardy's inequalities revisited,, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, 25 (1997), 217.   Google Scholar

[11]

S. Filippas, V. G. Maz'ya and A. Tertikas, On a question of Brezis and marcus,, Calc. of Variations and P.D.E., 25 (2006), 491.   Google Scholar

[12]

S. Filippas, V. G. Maz'ya and A. Tertikas, Critical Hardy-Sobolev Inequalities,, Journal de Math$\acutee$matiques Pures et Appliqu$\acutee$es, 87 (2007), 37.   Google Scholar

[13]

J. Dávila and L. Dupaigne, Hardy-type inequalities,, J. Eur. Math. Soc., 6 (2004), 335.   Google Scholar

[14]

M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators,, Annali Mat. Pura Appl., 80 (1968), 1.   Google Scholar

[15]

A. Kristály and C. Varga, Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity,, J. Math. Anal. Appl., 352 (2009), 139.   Google Scholar

[16]

Y. M. Chen, Regularity of solutions to the Dirichlet problem for degenerate elliptic equation,, Chin. Ann. Math., 24 (2003), 529.   Google Scholar

[17]

Y. T. Shen and Y. X. Yao, Nonlinear elliptic equations with critical potential and critical parameter,, Proceedings of the Royal Society of Edinburgh, 136 (2006), 1041.   Google Scholar

[18]

M. M. Zou, "Sign-Changing Critical Point Theory,", Springer-Verlag, (2008).   Google Scholar

[19]

E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities,, Courant Lecture Notes in Mathematics, 5 (1999).   Google Scholar

[1]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[2]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[3]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[6]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[7]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[8]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[9]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[12]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[15]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[16]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[20]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]