• Previous Article
    Blowup threshold and collapse mass separation for a drift-diffusion system in space-dimension two
  • CPAA Home
  • This Issue
  • Next Article
    Nonexistence of positive solutions for a system of integral equations on $R^n_+$ and applications
November  2013, 12(6): 2615-2625. doi: 10.3934/cpaa.2013.12.2615

A stability result for the Stokes-Boussinesq equations in infinite 3d channels

1. 

University of Pittsburgh, Department of Mathematics, 301 Thackeray Hall, Pittsburgh, PA 15260, United States

2. 

Isfahan University of Technology, Isfahan, Iran

Received  August 2012 Revised  November 2013 Published  May 2013

We consider the Stokes-Boussinesq (and the stationary Na\-vier-Stokes-Boussinesq) equations in a slanted, i.e. not aligned with the gravity's direction, 3d channel and with an arbitrary Rayleigh number. For the front-like initial data and under the no-slip boundary condition for the flow and no-flux boundary condition for the reactant temperature, we derive uniform estimates on the burning rate and the flow velocity, which can be interpreted as stability results for the laminar front.
Citation: Marta Lewicka, Mohammadreza Raoofi. A stability result for the Stokes-Boussinesq equations in infinite 3d channels. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2615-2625. doi: 10.3934/cpaa.2013.12.2615
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,, Comm. Pure Appl. Math., 17 (1964), 35.   Google Scholar

[2]

Henri Berestycki, "Some Nonlinear PDE's in the Theory of Flame Propagation,", ICIAM 99 (Edinburgh), (1322).   Google Scholar

[3]

Henri Berestycki, Peter Constantin and Lenya Ryzhik, Non-planar fronts in Boussinesq reactive flows,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 23 (2006), 407.   Google Scholar

[4]

Peter Constantin, Alexander Kiselev and Lenya Ryzhik, Fronts in reactive convection: bounds, stability, and instability,, Comm. Pure Appl. Math., 56 (2003), 1781.   Google Scholar

[5]

Peter Constantin, Alexander Kiselev, Lenya Ryzhik and Andrej Zlatoš, Diffusion and mixing in fluid flow,, Ann. of Math., 168 (2008), 643.   Google Scholar

[6]

Peter Constantin, Marta Lewicka and Lenya Ryzhik, Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions,, Nonlinearity, 19 (2006), 2605.   Google Scholar

[7]

Peter Constantin, Alexei Novikov and Lenya Ryzhik, Relaxation in reactive flows,, Geom. Funct. Anal., 18 (2008), 1145.   Google Scholar

[8]

Marta Lewicka, Existence of traveling waves in the Stokes-Boussinesq system for reactive flows,, J. Differential Equations, 237 (2007), 343.   Google Scholar

[9]

Jian-Guo Liu, Jie Liu and Robert L. Pego, Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate,, Comm. Pure Appl. Math., 60 (2007), 1443.   Google Scholar

[10]

Marta Lewicka and Piotr B. Mucha, On the existence of traveling waves in the 3D Boussinesq system,, Comm. Math. Phys., 292 (2009), 417.   Google Scholar

[11]

Rozenn Texier-Picard and Vitaly Volpert, Problèmes de réaction-diffusion-convection dans des cylindres non bornés,, C. R. Acad. Sci. Paris S\'er. I Math., 333 (2001), 1077.   Google Scholar

[12]

Wenzheng Xie, A sharp pointwise bound for functions with $L^2$-Laplacians on arbitrary domains and its applications,, Bull. Amer. Math. Soc. (N.S.), 26 (1992), 294.   Google Scholar

[13]

Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, "The Mathematical Theory of Combustion and Explosions,", Consultants Bureau [Plenum], (1985).   Google Scholar

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,, Comm. Pure Appl. Math., 17 (1964), 35.   Google Scholar

[2]

Henri Berestycki, "Some Nonlinear PDE's in the Theory of Flame Propagation,", ICIAM 99 (Edinburgh), (1322).   Google Scholar

[3]

Henri Berestycki, Peter Constantin and Lenya Ryzhik, Non-planar fronts in Boussinesq reactive flows,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 23 (2006), 407.   Google Scholar

[4]

Peter Constantin, Alexander Kiselev and Lenya Ryzhik, Fronts in reactive convection: bounds, stability, and instability,, Comm. Pure Appl. Math., 56 (2003), 1781.   Google Scholar

[5]

Peter Constantin, Alexander Kiselev, Lenya Ryzhik and Andrej Zlatoš, Diffusion and mixing in fluid flow,, Ann. of Math., 168 (2008), 643.   Google Scholar

[6]

Peter Constantin, Marta Lewicka and Lenya Ryzhik, Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions,, Nonlinearity, 19 (2006), 2605.   Google Scholar

[7]

Peter Constantin, Alexei Novikov and Lenya Ryzhik, Relaxation in reactive flows,, Geom. Funct. Anal., 18 (2008), 1145.   Google Scholar

[8]

Marta Lewicka, Existence of traveling waves in the Stokes-Boussinesq system for reactive flows,, J. Differential Equations, 237 (2007), 343.   Google Scholar

[9]

Jian-Guo Liu, Jie Liu and Robert L. Pego, Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate,, Comm. Pure Appl. Math., 60 (2007), 1443.   Google Scholar

[10]

Marta Lewicka and Piotr B. Mucha, On the existence of traveling waves in the 3D Boussinesq system,, Comm. Math. Phys., 292 (2009), 417.   Google Scholar

[11]

Rozenn Texier-Picard and Vitaly Volpert, Problèmes de réaction-diffusion-convection dans des cylindres non bornés,, C. R. Acad. Sci. Paris S\'er. I Math., 333 (2001), 1077.   Google Scholar

[12]

Wenzheng Xie, A sharp pointwise bound for functions with $L^2$-Laplacians on arbitrary domains and its applications,, Bull. Amer. Math. Soc. (N.S.), 26 (1992), 294.   Google Scholar

[13]

Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, "The Mathematical Theory of Combustion and Explosions,", Consultants Bureau [Plenum], (1985).   Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[14]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[16]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[17]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[18]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[19]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[20]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]