• Previous Article
    Blowup threshold and collapse mass separation for a drift-diffusion system in space-dimension two
  • CPAA Home
  • This Issue
  • Next Article
    Nonexistence of positive solutions for a system of integral equations on $R^n_+$ and applications
November  2013, 12(6): 2615-2625. doi: 10.3934/cpaa.2013.12.2615

A stability result for the Stokes-Boussinesq equations in infinite 3d channels

1. 

University of Pittsburgh, Department of Mathematics, 301 Thackeray Hall, Pittsburgh, PA 15260, United States

2. 

Isfahan University of Technology, Isfahan, Iran

Received  August 2012 Revised  November 2013 Published  May 2013

We consider the Stokes-Boussinesq (and the stationary Na\-vier-Stokes-Boussinesq) equations in a slanted, i.e. not aligned with the gravity's direction, 3d channel and with an arbitrary Rayleigh number. For the front-like initial data and under the no-slip boundary condition for the flow and no-flux boundary condition for the reactant temperature, we derive uniform estimates on the burning rate and the flow velocity, which can be interpreted as stability results for the laminar front.
Citation: Marta Lewicka, Mohammadreza Raoofi. A stability result for the Stokes-Boussinesq equations in infinite 3d channels. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2615-2625. doi: 10.3934/cpaa.2013.12.2615
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,, Comm. Pure Appl. Math., 17 (1964), 35.   Google Scholar

[2]

Henri Berestycki, "Some Nonlinear PDE's in the Theory of Flame Propagation,", ICIAM 99 (Edinburgh), (1322).   Google Scholar

[3]

Henri Berestycki, Peter Constantin and Lenya Ryzhik, Non-planar fronts in Boussinesq reactive flows,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 23 (2006), 407.   Google Scholar

[4]

Peter Constantin, Alexander Kiselev and Lenya Ryzhik, Fronts in reactive convection: bounds, stability, and instability,, Comm. Pure Appl. Math., 56 (2003), 1781.   Google Scholar

[5]

Peter Constantin, Alexander Kiselev, Lenya Ryzhik and Andrej Zlatoš, Diffusion and mixing in fluid flow,, Ann. of Math., 168 (2008), 643.   Google Scholar

[6]

Peter Constantin, Marta Lewicka and Lenya Ryzhik, Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions,, Nonlinearity, 19 (2006), 2605.   Google Scholar

[7]

Peter Constantin, Alexei Novikov and Lenya Ryzhik, Relaxation in reactive flows,, Geom. Funct. Anal., 18 (2008), 1145.   Google Scholar

[8]

Marta Lewicka, Existence of traveling waves in the Stokes-Boussinesq system for reactive flows,, J. Differential Equations, 237 (2007), 343.   Google Scholar

[9]

Jian-Guo Liu, Jie Liu and Robert L. Pego, Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate,, Comm. Pure Appl. Math., 60 (2007), 1443.   Google Scholar

[10]

Marta Lewicka and Piotr B. Mucha, On the existence of traveling waves in the 3D Boussinesq system,, Comm. Math. Phys., 292 (2009), 417.   Google Scholar

[11]

Rozenn Texier-Picard and Vitaly Volpert, Problèmes de réaction-diffusion-convection dans des cylindres non bornés,, C. R. Acad. Sci. Paris S\'er. I Math., 333 (2001), 1077.   Google Scholar

[12]

Wenzheng Xie, A sharp pointwise bound for functions with $L^2$-Laplacians on arbitrary domains and its applications,, Bull. Amer. Math. Soc. (N.S.), 26 (1992), 294.   Google Scholar

[13]

Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, "The Mathematical Theory of Combustion and Explosions,", Consultants Bureau [Plenum], (1985).   Google Scholar

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,, Comm. Pure Appl. Math., 17 (1964), 35.   Google Scholar

[2]

Henri Berestycki, "Some Nonlinear PDE's in the Theory of Flame Propagation,", ICIAM 99 (Edinburgh), (1322).   Google Scholar

[3]

Henri Berestycki, Peter Constantin and Lenya Ryzhik, Non-planar fronts in Boussinesq reactive flows,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 23 (2006), 407.   Google Scholar

[4]

Peter Constantin, Alexander Kiselev and Lenya Ryzhik, Fronts in reactive convection: bounds, stability, and instability,, Comm. Pure Appl. Math., 56 (2003), 1781.   Google Scholar

[5]

Peter Constantin, Alexander Kiselev, Lenya Ryzhik and Andrej Zlatoš, Diffusion and mixing in fluid flow,, Ann. of Math., 168 (2008), 643.   Google Scholar

[6]

Peter Constantin, Marta Lewicka and Lenya Ryzhik, Travelling waves in two-dimensional reactive Boussinesq systems with no-slip boundary conditions,, Nonlinearity, 19 (2006), 2605.   Google Scholar

[7]

Peter Constantin, Alexei Novikov and Lenya Ryzhik, Relaxation in reactive flows,, Geom. Funct. Anal., 18 (2008), 1145.   Google Scholar

[8]

Marta Lewicka, Existence of traveling waves in the Stokes-Boussinesq system for reactive flows,, J. Differential Equations, 237 (2007), 343.   Google Scholar

[9]

Jian-Guo Liu, Jie Liu and Robert L. Pego, Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate,, Comm. Pure Appl. Math., 60 (2007), 1443.   Google Scholar

[10]

Marta Lewicka and Piotr B. Mucha, On the existence of traveling waves in the 3D Boussinesq system,, Comm. Math. Phys., 292 (2009), 417.   Google Scholar

[11]

Rozenn Texier-Picard and Vitaly Volpert, Problèmes de réaction-diffusion-convection dans des cylindres non bornés,, C. R. Acad. Sci. Paris S\'er. I Math., 333 (2001), 1077.   Google Scholar

[12]

Wenzheng Xie, A sharp pointwise bound for functions with $L^2$-Laplacians on arbitrary domains and its applications,, Bull. Amer. Math. Soc. (N.S.), 26 (1992), 294.   Google Scholar

[13]

Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, "The Mathematical Theory of Combustion and Explosions,", Consultants Bureau [Plenum], (1985).   Google Scholar

[1]

Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure & Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139

[2]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[3]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[4]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[5]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[6]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[7]

Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349

[8]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[9]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[10]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[11]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[12]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[13]

Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269

[14]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

[15]

Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537

[16]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[17]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[18]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[19]

Ana Bela Cruzeiro. Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers. Journal of Geometric Mechanics, 2019, 11 (4) : 553-560. doi: 10.3934/jgm.2019027

[20]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]