November  2013, 12(6): 2645-2667. doi: 10.3934/cpaa.2013.12.2645

Decay rates for Kirchhoff-Timoshenko transmission problems

1. 

Department of Mathematics and Mechanics, Kharkov Karazin National University, 4, Svobody sq., Kharkov 61077, Ukraine

Received  August 2012 Revised  January 2013 Published  May 2013

A linear transmission problem for a thermoelastic Timoshenko beam model with Fourier low of heat conduction which has a Kirchhoff part with hereditary heat conduction of Gurtin-Pipkin type is considered. We prove that the system is exponentially stable under certain conditions on its parameters. The same result for the problem with purely elastic Kirchhoff part is obtained.
Citation: Tamara Fastovska. Decay rates for Kirchhoff-Timoshenko transmission problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2645-2667. doi: 10.3934/cpaa.2013.12.2645
References:
[1]

M. S. Alves, J. E. Muñoz Rivera, C. A. Raposo, M. Sepúlveda and O. P. Vera Villagrán, Uniform stabilization for transmission problem for Timoshenko's system with memory,, J. Math. Anal.Appl., 369 (2010), 323.  doi: 10.1016/j.jmaa.2010.02.045.  Google Scholar

[2]

W. D. Bastos, C. A. Raposo and M. L. Santos, A transmission problem for the Timoshenko system,, Comp. Appl. Math., 26 (2007), 215.   Google Scholar

[3]

I. Chueshov and I. Lasiecka, Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits,, Milan J. Math., 74 (2006), 117.  doi: 10.1007/s00032-006-0050-8.  Google Scholar

[4]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory,, Commun. Pure Appl. Anal., 6 (2007), 83.   Google Scholar

[5]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermo-viscoelastic model with memory,, Nonlin. Anal. TMA, 71 (2009), 4833.   Google Scholar

[6]

G. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford University Press, (1985).   Google Scholar

[7]

M. Grasselli, J. E. Muñoz Rivera and V. Pata, On the energy decay of the linear thermoelastic plate with memory,, J. Math. Anal. Appl., 309 (2005), 1.  doi: 10.1016/j.jmaa.2004.10.071.  Google Scholar

[8]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113.  doi: 10.1007/BF00281373.  Google Scholar

[9]

J. Lagnese, "Boundary Stabilization of Thing Plates,", Philadelphia: SIAM, (1989).   Google Scholar

[10]

S. A. Messaoudi, M. Pokojovy and B. Said-Houary, Nonlinear damped Timoshenko systems with second sound - global existence and exponential stability,, Math. Med. Appl. Sci., 32 (2009), 505.   Google Scholar

[11]

J. E. Muñoz Rivera and H. Portillo Oquendo, The transmission problem for thermoelastic beams,, J. Thermal Stresses, 24 (2001), 1137.  doi: 10.1080/014957301753251665.  Google Scholar

[12]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248.  doi: 10.1016/S0022-247X(02)00436-5.  Google Scholar

[13]

J. E. Muñoz Rivera and J. C. Vila Bravo, The transmission problem to thermoelastic plate of hyperbolic type,, IMA J. Appl. Math., 74 (2009), 950.   Google Scholar

[14]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983).   Google Scholar

[15]

R. Racke and B. Said-Houary, Decay rates and global existence for semilinear dissipative Timoshenko systems,, Quart. Appl. Math., ().  doi: 10.1090/S0033-569X-2012-01280-8.  Google Scholar

[16]

P. Schiavone and R. J.Tait, Thermal effects in Mindlin-type plates,, Q. Jl. Mech. appl. Math., 46 (1993), 27.   Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 148 (1987), 65.   Google Scholar

show all references

References:
[1]

M. S. Alves, J. E. Muñoz Rivera, C. A. Raposo, M. Sepúlveda and O. P. Vera Villagrán, Uniform stabilization for transmission problem for Timoshenko's system with memory,, J. Math. Anal.Appl., 369 (2010), 323.  doi: 10.1016/j.jmaa.2010.02.045.  Google Scholar

[2]

W. D. Bastos, C. A. Raposo and M. L. Santos, A transmission problem for the Timoshenko system,, Comp. Appl. Math., 26 (2007), 215.   Google Scholar

[3]

I. Chueshov and I. Lasiecka, Global attractors for Mindlin-Timoshenko plates and for their Kirchhoff limits,, Milan J. Math., 74 (2006), 117.  doi: 10.1007/s00032-006-0050-8.  Google Scholar

[4]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory,, Commun. Pure Appl. Anal., 6 (2007), 83.   Google Scholar

[5]

T. Fastovska, Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermo-viscoelastic model with memory,, Nonlin. Anal. TMA, 71 (2009), 4833.   Google Scholar

[6]

G. A. Goldstein, "Semigroups of Linear Operators and Applications,", Oxford University Press, (1985).   Google Scholar

[7]

M. Grasselli, J. E. Muñoz Rivera and V. Pata, On the energy decay of the linear thermoelastic plate with memory,, J. Math. Anal. Appl., 309 (2005), 1.  doi: 10.1016/j.jmaa.2004.10.071.  Google Scholar

[8]

M. E. Gurtin and A. C. Pipkin, A general theory of heat conduction with finite wave speeds,, Arch. Rational Mech. Anal., 31 (1968), 113.  doi: 10.1007/BF00281373.  Google Scholar

[9]

J. Lagnese, "Boundary Stabilization of Thing Plates,", Philadelphia: SIAM, (1989).   Google Scholar

[10]

S. A. Messaoudi, M. Pokojovy and B. Said-Houary, Nonlinear damped Timoshenko systems with second sound - global existence and exponential stability,, Math. Med. Appl. Sci., 32 (2009), 505.   Google Scholar

[11]

J. E. Muñoz Rivera and H. Portillo Oquendo, The transmission problem for thermoelastic beams,, J. Thermal Stresses, 24 (2001), 1137.  doi: 10.1080/014957301753251665.  Google Scholar

[12]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems - global existence and exponential stability,, J. Math. Anal. Appl., 276 (2002), 248.  doi: 10.1016/S0022-247X(02)00436-5.  Google Scholar

[13]

J. E. Muñoz Rivera and J. C. Vila Bravo, The transmission problem to thermoelastic plate of hyperbolic type,, IMA J. Appl. Math., 74 (2009), 950.   Google Scholar

[14]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Springer-Verlag, (1983).   Google Scholar

[15]

R. Racke and B. Said-Houary, Decay rates and global existence for semilinear dissipative Timoshenko systems,, Quart. Appl. Math., ().  doi: 10.1090/S0033-569X-2012-01280-8.  Google Scholar

[16]

P. Schiavone and R. J.Tait, Thermal effects in Mindlin-type plates,, Q. Jl. Mech. appl. Math., 46 (1993), 27.   Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Ann. Mat. Pura Appl., 148 (1987), 65.   Google Scholar

[1]

Makram Hamouda*, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[2]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[3]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[4]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[5]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[6]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[7]

Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021006

[8]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[9]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[10]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[13]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[14]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[15]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[16]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[17]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[18]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[19]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[20]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]