• Previous Article
    Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions
  • CPAA Home
  • This Issue
  • Next Article
    Long time dynamics for forced and weakly damped KdV on the torus
November  2013, 12(6): 2685-2696. doi: 10.3934/cpaa.2013.12.2685

Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system

1. 

Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China, China, China

Received  September 2012 Revised  December 2012 Published  May 2013

In this paper, we are concerned with properties of positive solutions of the following fractional elliptic system \begin{eqnarray} {(-\Delta+I)}^{\frac{\alpha}{2}}u=\frac{u^pv^q}{|x|^\beta}, \quad {(-\Delta+I)}^{\frac{\alpha}{2}}v=\frac{v^pu^q}{|x|^\beta}\quad in\quad R^n, \end{eqnarray} where $n \geq 3$, $0 \le \beta < \alpha < n$, $ p, q>1$ and $p+q<\frac{n+\alpha-\beta}{n-\alpha+\beta}$. We show that positive solutions of the system are radially symmetric and belong to $L^\infty(R^n)$, which possibly implies that the solutions are locally Hölder continuous. Moreover, if $ \alpha=2, \beta =0,p\le q$, we show that positive solution pair $(u,v)$ of the system is unique and $u=v = U$, where $U$ is the unique positive solution of the problem \begin{eqnarray} -\Delta u + u = u^{p+q}\quad {\rm in}\quad \mathbb{R}^n. \end{eqnarray}
Citation: Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685
References:
[1]

W. Chen and C. Li, "Methods on Nolinear Elliptic Equation,", AIMS Ser. Differ. Dyn. Syst., (2010).   Google Scholar

[2]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm Pure Appl Math, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[3]

X. Chen and J. Yang, Regularity and symmetry of positive solutions of an integral system,, Acta Math. Sci., 32B (2012), 1759.   Google Scholar

[4]

T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations,, Phys. Rev. Lett., 86 (2001), 5043.  doi: 10.1103/PhysRevLett.86.5043.  Google Scholar

[5]

M. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Ration. Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[6]

Y. Li, Remark on some conformlly invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[7]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.   Google Scholar

[8]

T. C. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^n, n\leq 3$,, Commun. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[9]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 22 (2005), 403.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[10]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[11]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type systems,, Mathematical and Computer Modelling, 49 (2009), 379.  doi: 10.1016/j.mcm.2008.06.010.  Google Scholar

[12]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, J. Diffe. Equa., 245 (2008), 2551.  doi: 10.1016/j.jde.2008.04008.  Google Scholar

[13]

Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system,, Nonlinear Anal., 75 (2012), 1989.  doi: 10.1016/j.na.2011.09.051.  Google Scholar

show all references

References:
[1]

W. Chen and C. Li, "Methods on Nolinear Elliptic Equation,", AIMS Ser. Differ. Dyn. Syst., (2010).   Google Scholar

[2]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm Pure Appl Math, 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[3]

X. Chen and J. Yang, Regularity and symmetry of positive solutions of an integral system,, Acta Math. Sci., 32B (2012), 1759.   Google Scholar

[4]

T. Kanna and M. Lakshmanan, Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations,, Phys. Rev. Lett., 86 (2001), 5043.  doi: 10.1103/PhysRevLett.86.5043.  Google Scholar

[5]

M. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbbR^n$,, Arch. Ration. Mech. Anal., 105 (1989), 243.  doi: 10.1007/BF00251502.  Google Scholar

[6]

Y. Li, Remark on some conformlly invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.  doi: 10.4171/JEMS/6.  Google Scholar

[7]

C. Li and L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents,, SIAM J. Math. Anal., 40 (2008), 1049.   Google Scholar

[8]

T. C. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^n, n\leq 3$,, Commun. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[9]

T. C. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 22 (2005), 403.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[10]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[11]

L. Ma and D. Chen, Radial symmetry and uniqueness for positive solutions of a Schrödinger type systems,, Mathematical and Computer Modelling, 49 (2009), 379.  doi: 10.1016/j.mcm.2008.06.010.  Google Scholar

[12]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, J. Diffe. Equa., 245 (2008), 2551.  doi: 10.1016/j.jde.2008.04008.  Google Scholar

[13]

Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system,, Nonlinear Anal., 75 (2012), 1989.  doi: 10.1016/j.na.2011.09.051.  Google Scholar

[1]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[2]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[3]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[4]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[7]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[8]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[9]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[12]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[13]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]