Citation: |
[1] |
S. Angenent and M. Fila, Interior gradient blow-up in a semilinear parabolic equation, Differential Integral Equations, 9 (1996), 865-877. |
[2] |
J. S. Guo and B. Hu, Blowup rate for the heat equation in Lipschitz domains with nonlinear heat source terms on the boundary, J. Math. Anal. Appl., 269 (2002), 28-49.doi: 10.1016/S0022-247X(02)00002-1. |
[3] |
J. S. Guo and B. Hu, Blowup rate estimates for the heat equation with a nonlinear gradient source term, Discrete Contin. Dyn. Sys., 20 (2008), 927-937. |
[4] |
M. Fila and G. Lieberman, Derivative blow-up and beyond for quasilinear parabolic equations, Differential Integral Equations, 7 (1994), 811-821. |
[5] |
S. Filippas and R. V. Kohn, Refined asympotics for the blowup of $u_t-\Delta u=u^p$, Comm. Pure Appl. Math., 45 (1992), 821-869.doi: 10.1002/cpa.3160450703. |
[6] |
A. Friedman and J. B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447. |
[7] |
Y. Giga and R. V. Kohn, Asympotically self-similar blow-up of semilinear heat equations, Commn. Pure Appl. Math., 38 (1985), 297-319.doi: 10.1002/cpa.3160380304. |
[8] |
M. A. Herrero and J. J. L. Velázquez, Blow-up profiles in one-dimensional semilinear parabolic problems, Commn. Partial Differential Equations, 17 (1992), 205-219.doi: 10.1080/03605309208820839. |
[9] |
M. A. Herrero and J. J. L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, 5 (1992), 973-997. |
[10] |
M. A. Herrero and J. J. L. Velázquez, Genetic behaviour of one-dimensional blow-up patterns, Ann. Sc. Norm. Super Pisa CI. Sci., 19 (1992), 381-450. |
[11] |
M. A. Herrero and J. J. L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 10 (1993), 131-189. |
[12] |
M. Kardar, G. Parisi and Y. C. Zhang, Dynmic scailing of growing interfaces, Phys. Rev. Lett., 56 (1986), 889-892.doi: 10.1103/PhysRevLett.56.889. |
[13] |
J. Krug and H. Spohn, Universality classes for deterministic surface growth, Phys. Rev. A., 38 (1988), 4271-4283.doi: 10.1103/PhysRevA.38.4271. |
[14] |
O. A. Ladyženskaya and V. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Amer. Math. Soc. Province, RI, 1967. |
[15] |
H. A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev., 32 (1990), 262-288. |
[16] |
G. M. Lieberman, "Second Order Parabolic Differential Equations," World Scientific, Singapore, 1996.doi: 10.1142/3302. |
[17] |
A. Lunardi, "Analytic Semigroups and Optional Regularity in Parabolic Problems," Birkhauser, Basel, 1995. |
[18] |
A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, "Blow-up in Quasilinear Parabolic Equations" (Michael Grinfeld, Trans.), Walter de Gruyter, Berlin, 1995.doi: 10.1515/9783110889864. |
[19] |
Ph. Souplet, Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differential Integral Equations, 15 (2002), 237-256. |
[20] |
Ph. Souplet and Q. Zhang, Global solutions of inhomogeneous Hamilton-Jacobi equations, J. D'Analyse Math., 99 (2006), 335-396.doi: 10.1007/BF02789452. |
[21] |
Z. C. Zhang and B. Hu, Boundary gradient blowup in a semilinear parabolic equation, Discrete Contin. Dyn. Sys. A, 26 (2010), 767-779.doi: 10.3934/dcds.2010.26.767. |
[22] |
Z. C. Zhang and B. Hu, Rate estimate of gradient blowup for a heat equation with exponential Nonlinearity, Nonlinear Analysis, 72 (2010), 4594-4601.doi: 10.1016/j.na.2010.02.036. |