November  2013, 12(6): 2697-2713. doi: 10.3934/cpaa.2013.12.2697

Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions

1. 

Universidade Federal de São Carlos, Departamento de Matemática, Rod. Washington Luís, Km 235, CEP. 13565-905, São Carlos, SP, Brazil, Brazil

Received  September 2012 Revised  October 2012 Published  May 2013

In this article we establish the existence and nonexistence of a weak solution to singular elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions.
Citation: Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697
References:
[1]

M. Bouchekif and A. Matallah, Singular elliptic equations involving a concave term and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions,, Electronic Journal of Differential Equations, 2010 (2010), 1.   Google Scholar

[2]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc.Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[3]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[4]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequality with weights,, Compos. Math., 53 (1984), 259.   Google Scholar

[5]

N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients,, Royal Society of Edinburgh, 131A (2001), 1275.  doi: 10.1017/S0308210500001396.  Google Scholar

[6]

K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality,, J. London Math. Soc., 2 (1993), 137.  doi: 10.1112/jlms/s2-48.1.137.  Google Scholar

[7]

L. C. Evans, "Partial Differential Equations,'', Graduate studies in mathematics 19, (1998).   Google Scholar

[8]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, J. Differential Equations, 177 (2001), 494.  doi: 10.1006/jdeq.2000.3999.  Google Scholar

[9]

P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms,, Nonlinear Anal., 61 (2005), 735.  doi: 10.1016/j.na.2005.01.030.  Google Scholar

[10]

X. J. Huang, X. P. Wu and C. L. Tang, Multiple positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents,, Nonlinear Anal., 74 (2011), 2602.  doi: 10.1016/j.na.2010.12.015.  Google Scholar

[11]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407.  doi: 10.1006/jdeq.1998.3589.  Google Scholar

[12]

M. Lin, Some further results for a class of weighted nonlinear elliptic equations,, J. Math. Anal. Appl., 337 (2008), 537.  doi: 10.1016/j.jmaa.2007.04.034.  Google Scholar

[13]

O. H. Miyagaki, On a class of semilinear elliptic problems in $R^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773.  doi: 10.1016/S0362-546X(96)00087-9.  Google Scholar

[14]

R. S. Rodrigues, On elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function,, Nonlinear Anal., 73 (2010), 857.  doi: 10.1016/j.na.2010.03.053.  Google Scholar

[15]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990).   Google Scholar

[16]

B. J. Xuan, S. Su and Y. Yan, Existence results for Brézis-Nirenberg problems with Hardy potential and singular coefficients,, Nonlinear Anal., 67 (2007), 2091.  doi: 10.1016/j.na.2006.09.018.  Google Scholar

[17]

B. J. Xuan, The solvability of quasilinear Brézis-Nirenberg-type problems with singular weights,, Nonlinear Anal., 62 (2005), 703.  doi: 10.1016/j.na.2005.03.095.  Google Scholar

show all references

References:
[1]

M. Bouchekif and A. Matallah, Singular elliptic equations involving a concave term and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions,, Electronic Journal of Differential Equations, 2010 (2010), 1.   Google Scholar

[2]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc.Amer. Math. Soc., 88 (1983), 486.  doi: 10.2307/2044999.  Google Scholar

[3]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[4]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequality with weights,, Compos. Math., 53 (1984), 259.   Google Scholar

[5]

N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients,, Royal Society of Edinburgh, 131A (2001), 1275.  doi: 10.1017/S0308210500001396.  Google Scholar

[6]

K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality,, J. London Math. Soc., 2 (1993), 137.  doi: 10.1112/jlms/s2-48.1.137.  Google Scholar

[7]

L. C. Evans, "Partial Differential Equations,'', Graduate studies in mathematics 19, (1998).   Google Scholar

[8]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, J. Differential Equations, 177 (2001), 494.  doi: 10.1006/jdeq.2000.3999.  Google Scholar

[9]

P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms,, Nonlinear Anal., 61 (2005), 735.  doi: 10.1016/j.na.2005.01.030.  Google Scholar

[10]

X. J. Huang, X. P. Wu and C. L. Tang, Multiple positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents,, Nonlinear Anal., 74 (2011), 2602.  doi: 10.1016/j.na.2010.12.015.  Google Scholar

[11]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407.  doi: 10.1006/jdeq.1998.3589.  Google Scholar

[12]

M. Lin, Some further results for a class of weighted nonlinear elliptic equations,, J. Math. Anal. Appl., 337 (2008), 537.  doi: 10.1016/j.jmaa.2007.04.034.  Google Scholar

[13]

O. H. Miyagaki, On a class of semilinear elliptic problems in $R^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773.  doi: 10.1016/S0362-546X(96)00087-9.  Google Scholar

[14]

R. S. Rodrigues, On elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function,, Nonlinear Anal., 73 (2010), 857.  doi: 10.1016/j.na.2010.03.053.  Google Scholar

[15]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990).   Google Scholar

[16]

B. J. Xuan, S. Su and Y. Yan, Existence results for Brézis-Nirenberg problems with Hardy potential and singular coefficients,, Nonlinear Anal., 67 (2007), 2091.  doi: 10.1016/j.na.2006.09.018.  Google Scholar

[17]

B. J. Xuan, The solvability of quasilinear Brézis-Nirenberg-type problems with singular weights,, Nonlinear Anal., 62 (2005), 703.  doi: 10.1016/j.na.2005.03.095.  Google Scholar

[1]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[2]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[8]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[9]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[10]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[11]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[12]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[13]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[14]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[15]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[16]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[17]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[18]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[19]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[20]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

[Back to Top]