November  2013, 12(6): 2697-2713. doi: 10.3934/cpaa.2013.12.2697

Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions

1. 

Universidade Federal de São Carlos, Departamento de Matemática, Rod. Washington Luís, Km 235, CEP. 13565-905, São Carlos, SP, Brazil, Brazil

Received  September 2012 Revised  October 2012 Published  May 2013

In this article we establish the existence and nonexistence of a weak solution to singular elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions.
Citation: Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697
References:
[1]

M. Bouchekif and A. Matallah, Singular elliptic equations involving a concave term and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions,, Electronic Journal of Differential Equations, 2010 (2010), 1. Google Scholar

[2]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc.Amer. Math. Soc., 88 (1983), 486. doi: 10.2307/2044999. Google Scholar

[3]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437. doi: 10.1002/cpa.3160360405. Google Scholar

[4]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequality with weights,, Compos. Math., 53 (1984), 259. Google Scholar

[5]

N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients,, Royal Society of Edinburgh, 131A (2001), 1275. doi: 10.1017/S0308210500001396. Google Scholar

[6]

K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality,, J. London Math. Soc., 2 (1993), 137. doi: 10.1112/jlms/s2-48.1.137. Google Scholar

[7]

L. C. Evans, "Partial Differential Equations,'', Graduate studies in mathematics 19, (1998). Google Scholar

[8]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, J. Differential Equations, 177 (2001), 494. doi: 10.1006/jdeq.2000.3999. Google Scholar

[9]

P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms,, Nonlinear Anal., 61 (2005), 735. doi: 10.1016/j.na.2005.01.030. Google Scholar

[10]

X. J. Huang, X. P. Wu and C. L. Tang, Multiple positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents,, Nonlinear Anal., 74 (2011), 2602. doi: 10.1016/j.na.2010.12.015. Google Scholar

[11]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407. doi: 10.1006/jdeq.1998.3589. Google Scholar

[12]

M. Lin, Some further results for a class of weighted nonlinear elliptic equations,, J. Math. Anal. Appl., 337 (2008), 537. doi: 10.1016/j.jmaa.2007.04.034. Google Scholar

[13]

O. H. Miyagaki, On a class of semilinear elliptic problems in $R^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773. doi: 10.1016/S0362-546X(96)00087-9. Google Scholar

[14]

R. S. Rodrigues, On elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function,, Nonlinear Anal., 73 (2010), 857. doi: 10.1016/j.na.2010.03.053. Google Scholar

[15]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990). Google Scholar

[16]

B. J. Xuan, S. Su and Y. Yan, Existence results for Brézis-Nirenberg problems with Hardy potential and singular coefficients,, Nonlinear Anal., 67 (2007), 2091. doi: 10.1016/j.na.2006.09.018. Google Scholar

[17]

B. J. Xuan, The solvability of quasilinear Brézis-Nirenberg-type problems with singular weights,, Nonlinear Anal., 62 (2005), 703. doi: 10.1016/j.na.2005.03.095. Google Scholar

show all references

References:
[1]

M. Bouchekif and A. Matallah, Singular elliptic equations involving a concave term and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions,, Electronic Journal of Differential Equations, 2010 (2010), 1. Google Scholar

[2]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc.Amer. Math. Soc., 88 (1983), 486. doi: 10.2307/2044999. Google Scholar

[3]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Comm. Pure Appl. Math., 36 (1983), 437. doi: 10.1002/cpa.3160360405. Google Scholar

[4]

L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequality with weights,, Compos. Math., 53 (1984), 259. Google Scholar

[5]

N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients,, Royal Society of Edinburgh, 131A (2001), 1275. doi: 10.1017/S0308210500001396. Google Scholar

[6]

K. S. Chou and C. W. Chu, On the best constant for a weighted Sobolev-Hardy inequality,, J. London Math. Soc., 2 (1993), 137. doi: 10.1112/jlms/s2-48.1.137. Google Scholar

[7]

L. C. Evans, "Partial Differential Equations,'', Graduate studies in mathematics 19, (1998). Google Scholar

[8]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations,, J. Differential Equations, 177 (2001), 494. doi: 10.1006/jdeq.2000.3999. Google Scholar

[9]

P. Han, Quasilinear elliptic problems with critical exponents and Hardy terms,, Nonlinear Anal., 61 (2005), 735. doi: 10.1016/j.na.2005.01.030. Google Scholar

[10]

X. J. Huang, X. P. Wu and C. L. Tang, Multiple positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents,, Nonlinear Anal., 74 (2011), 2602. doi: 10.1016/j.na.2010.12.015. Google Scholar

[11]

E. Jannelli, The role played by space dimension in elliptic critical problems,, J. Differential Equations, 156 (1999), 407. doi: 10.1006/jdeq.1998.3589. Google Scholar

[12]

M. Lin, Some further results for a class of weighted nonlinear elliptic equations,, J. Math. Anal. Appl., 337 (2008), 537. doi: 10.1016/j.jmaa.2007.04.034. Google Scholar

[13]

O. H. Miyagaki, On a class of semilinear elliptic problems in $R^N$ with critical growth,, Nonlinear Anal., 29 (1997), 773. doi: 10.1016/S0362-546X(96)00087-9. Google Scholar

[14]

R. S. Rodrigues, On elliptic problems involving critical Hardy-Sobolev exponents and sign-changing function,, Nonlinear Anal., 73 (2010), 857. doi: 10.1016/j.na.2010.03.053. Google Scholar

[15]

M. Struwe, "Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,", Springer-Verlag, (1990). Google Scholar

[16]

B. J. Xuan, S. Su and Y. Yan, Existence results for Brézis-Nirenberg problems with Hardy potential and singular coefficients,, Nonlinear Anal., 67 (2007), 2091. doi: 10.1016/j.na.2006.09.018. Google Scholar

[17]

B. J. Xuan, The solvability of quasilinear Brézis-Nirenberg-type problems with singular weights,, Nonlinear Anal., 62 (2005), 703. doi: 10.1016/j.na.2005.03.095. Google Scholar

[1]

B. Abdellaoui, I. Peral. On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2003, 2 (4) : 539-566. doi: 10.3934/cpaa.2003.2.539

[2]

Pablo L. De Nápoli, Irene Drelichman, Ricardo G. Durán. Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1629-1642. doi: 10.3934/cpaa.2012.11.1629

[3]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[4]

Mayte Pérez-Llanos. Optimal power for an elliptic equation related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 1975-2005. doi: 10.3934/cpaa.2016024

[5]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic & Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002

[6]

M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

[7]

Salomón Alarcón, Jinggang Tan. Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5825-5846. doi: 10.3934/dcds.2019256

[8]

Jijiang Sun, Shiwang Ma. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2317-2330. doi: 10.3934/cpaa.2014.13.2317

[9]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[10]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[11]

Tsung-Fang Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 383-405. doi: 10.3934/cpaa.2008.7.383

[12]

Norimichi Hirano, A. M. Micheletti, A. Pistoia. Existence of sign changing solutions for some critical problems on $\mathbb R^N$. Communications on Pure & Applied Analysis, 2005, 4 (1) : 143-164. doi: 10.3934/cpaa.2005.4.143

[13]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[14]

Patrizia Pucci, Raffaella Servadei. Nonexistence for $p$--Laplace equations with singular weights. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1421-1438. doi: 10.3934/cpaa.2010.9.1421

[15]

Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151

[16]

Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737

[17]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[18]

Ida De Bonis, Daniela Giachetti. Singular parabolic problems with possibly changing sign data. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2047-2064. doi: 10.3934/dcdsb.2014.19.2047

[19]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[20]

Yuxin Ge, Monica Musso, A. Pistoia, Daniel Pollack. A refined result on sign changing solutions for a critical elliptic problem. Communications on Pure & Applied Analysis, 2013, 12 (1) : 125-155. doi: 10.3934/cpaa.2013.12.125

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]