Citation: |
[1] |
J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the $3$-D Euler equations, Comm. Math. Phys., 94 (1984), 61-66. |
[2] |
J. M. Bony, Calcul symbolique et propagation des singularites pour les quations aux drivees partielles non lineaires, Ann. Sci. Ecole Norm. Sup., 14 (1981), 209-246. |
[3] |
C. H. Chan and A. Vasseur, Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations, available online at arXiv:0705.3659. |
[4] |
J. Y. Chemin, "Perfect Incompressibe Fluids," Oxford University Press, New York, 1998. |
[5] |
P. Constantin and C. Foias, "Navier-Stokes Equations," Chicago University Press, Chicago, 1988. |
[6] |
P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789. |
[7] |
C. Fefferman, http://www.claymath.org/millennium/Navier-Stokes equations. preprint. |
[8] |
L. Iskauriaza, G. A. Seregin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness, (Russian) Uspekhi Mat. Nauk, 58 (2003), 3-44; translation in Russian Math. Surveys, 58 (2003), 211-250 |
[9] |
H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations, Math. Z., 235 (2000), 173-194. |
[10] |
O. A. Ladyzhenskaya, "Mathematical Questions of the Dynamics of a Viscous Incompressible Fluid," Nauka, Moscow, 1970. |
[11] |
A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002. |
[12] |
G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182. |
[13] |
G. Seregin and V. Sverak, Navier-Stokes equations with lower bounds on the pressure, Arch. Ration. Mech. Anal., 163 (2002), 65-86. |
[14] |
J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195. |
[15] |
J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, Univ. of Wisconsin Press, Madison, 1963, 69-98. |
[16] |
M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458. |
[17] |
T. Tao, Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. |
[18] |
R. Temam, "Navier-Stokes Equations," Second Edition, AMS Chelsea Publishing, Providence, RI, 2001. |
[19] |
H. Triebel, "Theory of Function Spaces," Birkauser Verlag, Boston, 1983. |
[20] |
Y. Zhou and S. Gala, Logarithmically improved Serrin's criterion to the Navier-Stokes equations in multiplier spaces, preprint, 2008. |
[21] |
Y. Zhou and Z. Lei, Logarithmically improved criteria for Euler and Navier-Stokes equations, avaliable on http://arxiv.org/abs/0805.2784v1 |