\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Logarithmically improved criteria for Euler and Navier-Stokes equations

Abstract Related Papers Cited by
  • In this paper we prove the logarithmically improved Serrin's criteria to the three-dimensional incompressible Navier-Stokes equations.
    Mathematics Subject Classification: Primary: 35Q35; Secondary: 76D03.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the $3$-D Euler equations, Comm. Math. Phys., 94 (1984), 61-66.

    [2]

    J. M. Bony, Calcul symbolique et propagation des singularites pour les quations aux drivees partielles non lineaires, Ann. Sci. Ecole Norm. Sup., 14 (1981), 209-246.

    [3]

    C. H. Chan and A. VasseurLog improvement of the Prodi-Serrin criteria for Navier-Stokes equations, available online at arXiv:0705.3659.

    [4]

    J. Y. Chemin, "Perfect Incompressibe Fluids," Oxford University Press, New York, 1998.

    [5]

    P. Constantin and C. Foias, "Navier-Stokes Equations," Chicago University Press, Chicago, 1988.

    [6]

    P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J., 42 (1993), 775-789.

    [7]

    C. Feffermanhttp://www.claymath.org/millennium/Navier-Stokes equations. preprint.

    [8]

    L. Iskauriaza, G. A. Seregin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness, (Russian) Uspekhi Mat. Nauk, 58 (2003), 3-44; translation in Russian Math. Surveys, 58 (2003), 211-250

    [9]

    H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations, Math. Z., 235 (2000), 173-194.

    [10]

    O. A. Ladyzhenskaya, "Mathematical Questions of the Dynamics of a Viscous Incompressible Fluid," Nauka, Moscow, 1970.

    [11]

    A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002.

    [12]

    G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48 (1959), 173-182.

    [13]

    G. Seregin and V. Sverak, Navier-Stokes equations with lower bounds on the pressure, Arch. Ration. Mech. Anal., 163 (2002), 65-86.

    [14]

    J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195.

    [15]

    J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, Univ. of Wisconsin Press, Madison, 1963, 69-98.

    [16]

    M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 437-458.

    [17]

    T. Tao, Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.

    [18]

    R. Temam, "Navier-Stokes Equations," Second Edition, AMS Chelsea Publishing, Providence, RI, 2001.

    [19]

    H. Triebel, "Theory of Function Spaces," Birkauser Verlag, Boston, 1983.

    [20]

    Y. Zhou and S. Gala, Logarithmically improved Serrin's criterion to the Navier-Stokes equations in multiplier spaces, preprint, 2008.

    [21]

    Y. Zhou and Z. LeiLogarithmically improved criteria for Euler and Navier-Stokes equations, avaliable on http://arxiv.org/abs/0805.2784v1

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(155) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return