• Previous Article
    Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent
  • CPAA Home
  • This Issue
  • Next Article
    Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data
November  2013, 12(6): 2753-2772. doi: 10.3934/cpaa.2013.12.2753

On general fractional abstract Cauchy problem

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China, China

2. 

Department of Basic Courses, Xi'an Technological University, North Institute of Information Engineering, Xi'an 710025, China

Received  October 2012 Revised  January 2013 Published  May 2013

This paper is concerned with general fractional Cauchy problems of order $0 < \alpha < 1$ and type $0 \leq \beta \leq 1$ in infinite-dimensional Banach spaces. A new notion, named general fractional resolvent of order $0 < \alpha < 1$ and type $0 \leq \beta \leq 1$ is developed. Some of its properties are obtained. Moreover, some sufficient conditions are presented to guarantee that the mild solutions and strong solutions of homogeneous and inhomogeneous general fractional Cauchy problem exist. An illustrative example is presented.
Citation: Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753
References:
[1]

W. Arendt, C. Batty, M. Hiever and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems,", Monogr. Math., (2001).   Google Scholar

[2]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", University Press Facilities, (2001).   Google Scholar

[3]

M. Caputo, "Elasticita Dissipacione,", Bologna: Zanichelli, (1969).   Google Scholar

[4]

C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.  doi: 10.1007/s00233-009-9184-7.  Google Scholar

[5]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations,, J. Differential Equations, 199 (2004), 211.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[6]

A. Erdé, "Higher Transcendental Functions,", vol. 3, (1955).   Google Scholar

[7]

R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives,, J. Phys. Chem. B, 104 (2000), 3914.  doi: 10.1021/jp9936289.  Google Scholar

[8]

R. Hilfer, Fractional time evolution,, in, (2000), 87.  doi: 10.1142/9789812817747_0002.  Google Scholar

[9]

R. Hilfer, Fractional calculus and regular variation in thermodynamics,, In, (2000).   Google Scholar

[10]

R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials,, Chem. Phys., 284 (2002), 399.  doi: 10.1016/S0301-0104(02)00670-5.  Google Scholar

[11]

R. Hilfer, Y. Luchko and Ž. Tomovski, Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives,, Fract. Calc. Appl. Anal., 12 (2009), 299.   Google Scholar

[12]

K. X. Li and J. G. Peng, Fractional resolvents and fractional evolution equations,, Applied Mathematics Letters, 25 (2012), 808.  doi: 10.1016/j.aml.2011.10.023.  Google Scholar

[13]

M. Li, C. Chen and F. B. Li, On fractional powers of generators of fractional resolvent families,, J. Funct. Anal., 259 (2010), 2702.  doi: 10.1016/j.jfa.2010.07.007.  Google Scholar

[14]

M. M. Meerschaert, E. Nane and P. Vellaisamy, Fractional Cauchy Problems on bounded domains,, Ann. Anal., 37 (2009), 979.  doi: 10.1214/08-AOP426.  Google Scholar

[15]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[16]

K. S. Miller and B. Ross, "An Introduction to the Fractional Differential Equations,", New York: Wiley, (1993).   Google Scholar

[17]

F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial survey,, Fract. Calc. Appl. Anal., 10 (2007), 269.   Google Scholar

[18]

R. R. Nigmatullin, To the theoretical explanation of the "universal response",, Phys. Sta. Sol. (b), 123 (1984), 739.  doi: 10.1002/pssb.2221230241.  Google Scholar

[19]

K. B. Oldham and J. Spanier, "The Fractional Calculus,", New York: Academic, (1974).   Google Scholar

[20]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[21]

J. Prüs, "Evolutionary Integral Equations and Applications,", Birkh$\ddota$ser, (1993).   Google Scholar

[22]

T. Sandev, R. Metzler and Ž. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative,, J. Phys. A: Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/25/255203.  Google Scholar

[23]

T. Sandev and Ž. Tomovski, The general time fractional Fokker-Planck equation with a constant external force,, Proc. Symposium on Fractional Signals and Systems, (2011), 4.   Google Scholar

[24]

H. M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel,, Appl. Math. Comput., 211 (2009), 198.  doi: 10.1016/j.amc.2009.01.055.  Google Scholar

[25]

Ž. Tomovski, R. Hilferb and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions,, Integral Transforms and Special Functions, 21 (2010), 797.  doi: 10.1080/10652461003675737.  Google Scholar

[26]

G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos,, Phy. D., 76 (1994), 110.  doi: 10.1016/0167-2789(94)90254-2.  Google Scholar

show all references

References:
[1]

W. Arendt, C. Batty, M. Hiever and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems,", Monogr. Math., (2001).   Google Scholar

[2]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", University Press Facilities, (2001).   Google Scholar

[3]

M. Caputo, "Elasticita Dissipacione,", Bologna: Zanichelli, (1969).   Google Scholar

[4]

C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.  doi: 10.1007/s00233-009-9184-7.  Google Scholar

[5]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations,, J. Differential Equations, 199 (2004), 211.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[6]

A. Erdé, "Higher Transcendental Functions,", vol. 3, (1955).   Google Scholar

[7]

R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives,, J. Phys. Chem. B, 104 (2000), 3914.  doi: 10.1021/jp9936289.  Google Scholar

[8]

R. Hilfer, Fractional time evolution,, in, (2000), 87.  doi: 10.1142/9789812817747_0002.  Google Scholar

[9]

R. Hilfer, Fractional calculus and regular variation in thermodynamics,, In, (2000).   Google Scholar

[10]

R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials,, Chem. Phys., 284 (2002), 399.  doi: 10.1016/S0301-0104(02)00670-5.  Google Scholar

[11]

R. Hilfer, Y. Luchko and Ž. Tomovski, Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives,, Fract. Calc. Appl. Anal., 12 (2009), 299.   Google Scholar

[12]

K. X. Li and J. G. Peng, Fractional resolvents and fractional evolution equations,, Applied Mathematics Letters, 25 (2012), 808.  doi: 10.1016/j.aml.2011.10.023.  Google Scholar

[13]

M. Li, C. Chen and F. B. Li, On fractional powers of generators of fractional resolvent families,, J. Funct. Anal., 259 (2010), 2702.  doi: 10.1016/j.jfa.2010.07.007.  Google Scholar

[14]

M. M. Meerschaert, E. Nane and P. Vellaisamy, Fractional Cauchy Problems on bounded domains,, Ann. Anal., 37 (2009), 979.  doi: 10.1214/08-AOP426.  Google Scholar

[15]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[16]

K. S. Miller and B. Ross, "An Introduction to the Fractional Differential Equations,", New York: Wiley, (1993).   Google Scholar

[17]

F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial survey,, Fract. Calc. Appl. Anal., 10 (2007), 269.   Google Scholar

[18]

R. R. Nigmatullin, To the theoretical explanation of the "universal response",, Phys. Sta. Sol. (b), 123 (1984), 739.  doi: 10.1002/pssb.2221230241.  Google Scholar

[19]

K. B. Oldham and J. Spanier, "The Fractional Calculus,", New York: Academic, (1974).   Google Scholar

[20]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[21]

J. Prüs, "Evolutionary Integral Equations and Applications,", Birkh$\ddota$ser, (1993).   Google Scholar

[22]

T. Sandev, R. Metzler and Ž. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative,, J. Phys. A: Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/25/255203.  Google Scholar

[23]

T. Sandev and Ž. Tomovski, The general time fractional Fokker-Planck equation with a constant external force,, Proc. Symposium on Fractional Signals and Systems, (2011), 4.   Google Scholar

[24]

H. M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel,, Appl. Math. Comput., 211 (2009), 198.  doi: 10.1016/j.amc.2009.01.055.  Google Scholar

[25]

Ž. Tomovski, R. Hilferb and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions,, Integral Transforms and Special Functions, 21 (2010), 797.  doi: 10.1080/10652461003675737.  Google Scholar

[26]

G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos,, Phy. D., 76 (1994), 110.  doi: 10.1016/0167-2789(94)90254-2.  Google Scholar

[1]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[2]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[3]

Paul Eloe, Jaganmohan Jonnalagadda. Quasilinearization applied to boundary value problems at resonance for Riemann-Liouville fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2719-2734. doi: 10.3934/dcdss.2020220

[4]

Thaís Jordão, Xingping Sun. General types of spherical mean operators and $K$-functionals of fractional orders. Communications on Pure & Applied Analysis, 2015, 14 (3) : 743-757. doi: 10.3934/cpaa.2015.14.743

[5]

María Guadalupe Morales, Zuzana Došlá, Francisco J. Mendoza. Riemann-Liouville derivative over the space of integrable distributions. Electronic Research Archive, 2020, 28 (2) : 567-587. doi: 10.3934/era.2020030

[6]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[7]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[8]

Claudianor O. Alves, Giovany M. Figueiredo, Gaetano Siciliano. Ground state solutions for fractional scalar field equations under a general critical nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2199-2215. doi: 10.3934/cpaa.2019099

[9]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

[10]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020213

[11]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

[12]

Mohammed AL Horani, Mauro Fabrizio, Angelo Favini, Hiroki Tanabe. Fractional Cauchy problems and applications. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2259-2270. doi: 10.3934/dcdss.2020187

[13]

Ahmad Z. Fino, Mokhtar Kirane. The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3625-3650. doi: 10.3934/cpaa.2020160

[14]

Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837

[15]

Tatsien Li, Wancheng Sheng. The general multi-dimensional Riemann problem for hyperbolic systems with real constant coefficients. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 737-744. doi: 10.3934/dcds.2002.8.737

[16]

Flank D. M. Bezerra, Alexandre N. Carvalho, Marcelo J. D. Nascimento. Fractional approximations of abstract semilinear parabolic problems. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020095

[17]

Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023

[18]

Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541

[19]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[20]

Mohammed Al Horani, Mauro Fabrizio, Angelo Favini, Hiroki Tanabe. Fractional Cauchy problems for infinite interval case. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020240

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]