• Previous Article
    Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent
  • CPAA Home
  • This Issue
  • Next Article
    Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data
November  2013, 12(6): 2753-2772. doi: 10.3934/cpaa.2013.12.2753

On general fractional abstract Cauchy problem

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China, China

2. 

Department of Basic Courses, Xi'an Technological University, North Institute of Information Engineering, Xi'an 710025, China

Received  October 2012 Revised  January 2013 Published  May 2013

This paper is concerned with general fractional Cauchy problems of order $0 < \alpha < 1$ and type $0 \leq \beta \leq 1$ in infinite-dimensional Banach spaces. A new notion, named general fractional resolvent of order $0 < \alpha < 1$ and type $0 \leq \beta \leq 1$ is developed. Some of its properties are obtained. Moreover, some sufficient conditions are presented to guarantee that the mild solutions and strong solutions of homogeneous and inhomogeneous general fractional Cauchy problem exist. An illustrative example is presented.
Citation: Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753
References:
[1]

W. Arendt, C. Batty, M. Hiever and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems,", Monogr. Math., (2001).   Google Scholar

[2]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", University Press Facilities, (2001).   Google Scholar

[3]

M. Caputo, "Elasticita Dissipacione,", Bologna: Zanichelli, (1969).   Google Scholar

[4]

C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.  doi: 10.1007/s00233-009-9184-7.  Google Scholar

[5]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations,, J. Differential Equations, 199 (2004), 211.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[6]

A. Erdé, "Higher Transcendental Functions,", vol. 3, (1955).   Google Scholar

[7]

R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives,, J. Phys. Chem. B, 104 (2000), 3914.  doi: 10.1021/jp9936289.  Google Scholar

[8]

R. Hilfer, Fractional time evolution,, in, (2000), 87.  doi: 10.1142/9789812817747_0002.  Google Scholar

[9]

R. Hilfer, Fractional calculus and regular variation in thermodynamics,, In, (2000).   Google Scholar

[10]

R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials,, Chem. Phys., 284 (2002), 399.  doi: 10.1016/S0301-0104(02)00670-5.  Google Scholar

[11]

R. Hilfer, Y. Luchko and Ž. Tomovski, Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives,, Fract. Calc. Appl. Anal., 12 (2009), 299.   Google Scholar

[12]

K. X. Li and J. G. Peng, Fractional resolvents and fractional evolution equations,, Applied Mathematics Letters, 25 (2012), 808.  doi: 10.1016/j.aml.2011.10.023.  Google Scholar

[13]

M. Li, C. Chen and F. B. Li, On fractional powers of generators of fractional resolvent families,, J. Funct. Anal., 259 (2010), 2702.  doi: 10.1016/j.jfa.2010.07.007.  Google Scholar

[14]

M. M. Meerschaert, E. Nane and P. Vellaisamy, Fractional Cauchy Problems on bounded domains,, Ann. Anal., 37 (2009), 979.  doi: 10.1214/08-AOP426.  Google Scholar

[15]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[16]

K. S. Miller and B. Ross, "An Introduction to the Fractional Differential Equations,", New York: Wiley, (1993).   Google Scholar

[17]

F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial survey,, Fract. Calc. Appl. Anal., 10 (2007), 269.   Google Scholar

[18]

R. R. Nigmatullin, To the theoretical explanation of the "universal response",, Phys. Sta. Sol. (b), 123 (1984), 739.  doi: 10.1002/pssb.2221230241.  Google Scholar

[19]

K. B. Oldham and J. Spanier, "The Fractional Calculus,", New York: Academic, (1974).   Google Scholar

[20]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[21]

J. Prüs, "Evolutionary Integral Equations and Applications,", Birkh$\ddota$ser, (1993).   Google Scholar

[22]

T. Sandev, R. Metzler and Ž. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative,, J. Phys. A: Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/25/255203.  Google Scholar

[23]

T. Sandev and Ž. Tomovski, The general time fractional Fokker-Planck equation with a constant external force,, Proc. Symposium on Fractional Signals and Systems, (2011), 4.   Google Scholar

[24]

H. M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel,, Appl. Math. Comput., 211 (2009), 198.  doi: 10.1016/j.amc.2009.01.055.  Google Scholar

[25]

Ž. Tomovski, R. Hilferb and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions,, Integral Transforms and Special Functions, 21 (2010), 797.  doi: 10.1080/10652461003675737.  Google Scholar

[26]

G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos,, Phy. D., 76 (1994), 110.  doi: 10.1016/0167-2789(94)90254-2.  Google Scholar

show all references

References:
[1]

W. Arendt, C. Batty, M. Hiever and F. Neubrander, "Vector-Valued Laplace Transforms and Cauchy Problems,", Monogr. Math., (2001).   Google Scholar

[2]

E. Bazhlekova, "Fractional Evolution Equations in Banach Spaces,", University Press Facilities, (2001).   Google Scholar

[3]

M. Caputo, "Elasticita Dissipacione,", Bologna: Zanichelli, (1969).   Google Scholar

[4]

C. Chen and M. Li, On fractional resolvent operator functions,, Semigroup Forum, 80 (2010), 121.  doi: 10.1007/s00233-009-9184-7.  Google Scholar

[5]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations,, J. Differential Equations, 199 (2004), 211.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[6]

A. Erdé, "Higher Transcendental Functions,", vol. 3, (1955).   Google Scholar

[7]

R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives,, J. Phys. Chem. B, 104 (2000), 3914.  doi: 10.1021/jp9936289.  Google Scholar

[8]

R. Hilfer, Fractional time evolution,, in, (2000), 87.  doi: 10.1142/9789812817747_0002.  Google Scholar

[9]

R. Hilfer, Fractional calculus and regular variation in thermodynamics,, In, (2000).   Google Scholar

[10]

R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials,, Chem. Phys., 284 (2002), 399.  doi: 10.1016/S0301-0104(02)00670-5.  Google Scholar

[11]

R. Hilfer, Y. Luchko and Ž. Tomovski, Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives,, Fract. Calc. Appl. Anal., 12 (2009), 299.   Google Scholar

[12]

K. X. Li and J. G. Peng, Fractional resolvents and fractional evolution equations,, Applied Mathematics Letters, 25 (2012), 808.  doi: 10.1016/j.aml.2011.10.023.  Google Scholar

[13]

M. Li, C. Chen and F. B. Li, On fractional powers of generators of fractional resolvent families,, J. Funct. Anal., 259 (2010), 2702.  doi: 10.1016/j.jfa.2010.07.007.  Google Scholar

[14]

M. M. Meerschaert, E. Nane and P. Vellaisamy, Fractional Cauchy Problems on bounded domains,, Ann. Anal., 37 (2009), 979.  doi: 10.1214/08-AOP426.  Google Scholar

[15]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach,, Phys. Rep., 339 (2000), 1.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[16]

K. S. Miller and B. Ross, "An Introduction to the Fractional Differential Equations,", New York: Wiley, (1993).   Google Scholar

[17]

F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: a tutorial survey,, Fract. Calc. Appl. Anal., 10 (2007), 269.   Google Scholar

[18]

R. R. Nigmatullin, To the theoretical explanation of the "universal response",, Phys. Sta. Sol. (b), 123 (1984), 739.  doi: 10.1002/pssb.2221230241.  Google Scholar

[19]

K. B. Oldham and J. Spanier, "The Fractional Calculus,", New York: Academic, (1974).   Google Scholar

[20]

I. Podlubny, "Fractional Differential Equations,", Academic Press, (1999).   Google Scholar

[21]

J. Prüs, "Evolutionary Integral Equations and Applications,", Birkh$\ddota$ser, (1993).   Google Scholar

[22]

T. Sandev, R. Metzler and Ž. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative,, J. Phys. A: Math. Theor., 44 (2011).  doi: 10.1088/1751-8113/44/25/255203.  Google Scholar

[23]

T. Sandev and Ž. Tomovski, The general time fractional Fokker-Planck equation with a constant external force,, Proc. Symposium on Fractional Signals and Systems, (2011), 4.   Google Scholar

[24]

H. M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel,, Appl. Math. Comput., 211 (2009), 198.  doi: 10.1016/j.amc.2009.01.055.  Google Scholar

[25]

Ž. Tomovski, R. Hilferb and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions,, Integral Transforms and Special Functions, 21 (2010), 797.  doi: 10.1080/10652461003675737.  Google Scholar

[26]

G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos,, Phy. D., 76 (1994), 110.  doi: 10.1016/0167-2789(94)90254-2.  Google Scholar

[1]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[2]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[3]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[4]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[5]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[6]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[7]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[8]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[9]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[10]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[11]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[12]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[13]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[16]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[17]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[20]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]