November  2013, 12(6): 2787-2795. doi: 10.3934/cpaa.2013.12.2787

Convergence rates for elliptic reiterated homogenization problems

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

Received  March 2012 Revised  September 2012 Published  May 2013

In this paper, we study the convergence rates for the reiterated homogenization for equations of the form $-div(A(\frac{x}{\varepsilon},\frac{x}{\varepsilon^{2}})\nabla u_{\varepsilon})=f(x)$. As a consequence, we obtain the convergence rates in $L^{p}$ for solutions with Dirichlet boundary condition by a method based on the representation of elliptic equation solution by Green function. Meanwhile, the growth rate of Green function is found.
Citation: Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787
References:
[1]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in North-Holland, (1978).  doi: 10.1115/1.3424588.  Google Scholar

[2]

M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date,, Appl. Math. Optimization, 15 (1987), 93.  doi: 10.1007/BF01442648.  Google Scholar

[3]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization,, Comm. Pure. Appl. Math., 40 (1987), 803.  doi: 10.1002/cpa.3160400607.  Google Scholar

[4]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form,, Comm. Pure. Appl. Math., 42 (1989), 139.  doi: 10.1002/cpa.3160420203.  Google Scholar

[5]

M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization,, Comm. Pure. Appl. Math., 44 (1991), 897.  doi: 10.1002/cpa.3160440805.  Google Scholar

[6]

C. E. Kenig, F. H. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, preprint, ().   Google Scholar

[7]

C. E. Kenig, F. H. Lin and Z. Shen, Periodic homogenization of Green function and Neumann functions,, preprint, ().   Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order,", Springer-Verlag, (1998).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

show all references

References:
[1]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in North-Holland, (1978).  doi: 10.1115/1.3424588.  Google Scholar

[2]

M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date,, Appl. Math. Optimization, 15 (1987), 93.  doi: 10.1007/BF01442648.  Google Scholar

[3]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization,, Comm. Pure. Appl. Math., 40 (1987), 803.  doi: 10.1002/cpa.3160400607.  Google Scholar

[4]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form,, Comm. Pure. Appl. Math., 42 (1989), 139.  doi: 10.1002/cpa.3160420203.  Google Scholar

[5]

M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization,, Comm. Pure. Appl. Math., 44 (1991), 897.  doi: 10.1002/cpa.3160440805.  Google Scholar

[6]

C. E. Kenig, F. H. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, preprint, ().   Google Scholar

[7]

C. E. Kenig, F. H. Lin and Z. Shen, Periodic homogenization of Green function and Neumann functions,, preprint, ().   Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order,", Springer-Verlag, (1998).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[1]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[2]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[3]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[4]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[7]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[8]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[9]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]