November  2013, 12(6): 2787-2795. doi: 10.3934/cpaa.2013.12.2787

Convergence rates for elliptic reiterated homogenization problems

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

Received  March 2012 Revised  September 2012 Published  May 2013

In this paper, we study the convergence rates for the reiterated homogenization for equations of the form $-div(A(\frac{x}{\varepsilon},\frac{x}{\varepsilon^{2}})\nabla u_{\varepsilon})=f(x)$. As a consequence, we obtain the convergence rates in $L^{p}$ for solutions with Dirichlet boundary condition by a method based on the representation of elliptic equation solution by Green function. Meanwhile, the growth rate of Green function is found.
Citation: Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787
References:
[1]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in North-Holland, (1978). doi: 10.1115/1.3424588. Google Scholar

[2]

M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date,, Appl. Math. Optimization, 15 (1987), 93. doi: 10.1007/BF01442648. Google Scholar

[3]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization,, Comm. Pure. Appl. Math., 40 (1987), 803. doi: 10.1002/cpa.3160400607. Google Scholar

[4]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form,, Comm. Pure. Appl. Math., 42 (1989), 139. doi: 10.1002/cpa.3160420203. Google Scholar

[5]

M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization,, Comm. Pure. Appl. Math., 44 (1991), 897. doi: 10.1002/cpa.3160440805. Google Scholar

[6]

C. E. Kenig, F. H. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, preprint, (). Google Scholar

[7]

C. E. Kenig, F. H. Lin and Z. Shen, Periodic homogenization of Green function and Neumann functions,, preprint, (). Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order,", Springer-Verlag, (1998). doi: 10.1007/978-3-642-61798-0. Google Scholar

show all references

References:
[1]

A. Bensoussan, J. L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structures,", Studies in North-Holland, (1978). doi: 10.1115/1.3424588. Google Scholar

[2]

M. Avellaneda and F. H. Lin, Homogenization of elliptic problems with $L^p$ boundary date,, Appl. Math. Optimization, 15 (1987), 93. doi: 10.1007/BF01442648. Google Scholar

[3]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization,, Comm. Pure. Appl. Math., 40 (1987), 803. doi: 10.1002/cpa.3160400607. Google Scholar

[4]

M. Avellaneda and F. H. Lin, Compactness methods in the thoery of homogenization $\Pi$: Equations in non-divergence form,, Comm. Pure. Appl. Math., 42 (1989), 139. doi: 10.1002/cpa.3160420203. Google Scholar

[5]

M. Avellaneda and F. H. Lin, $L^p$ bounds on singular integral in homogenization,, Comm. Pure. Appl. Math., 44 (1991), 897. doi: 10.1002/cpa.3160440805. Google Scholar

[6]

C. E. Kenig, F. H. Lin and Z. Shen, Convergence rates in $L^2$ for elliptic homogenization problems,, preprint, (). Google Scholar

[7]

C. E. Kenig, F. H. Lin and Z. Shen, Periodic homogenization of Green function and Neumann functions,, preprint, (). Google Scholar

[8]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order,", Springer-Verlag, (1998). doi: 10.1007/978-3-642-61798-0. Google Scholar

[1]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[2]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[3]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[4]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[5]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[6]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[7]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[8]

James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001

[9]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[10]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[11]

Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773

[12]

Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619

[13]

Stefan Kindermann, Antonio Leitão. Convergence rates for Kaczmarz-type regularization methods. Inverse Problems & Imaging, 2014, 8 (1) : 149-172. doi: 10.3934/ipi.2014.8.149

[14]

Jean Louis Woukeng. $\sum $-convergence and reiterated homogenization of nonlinear parabolic operators. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1753-1789. doi: 10.3934/cpaa.2010.9.1753

[15]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[16]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[17]

Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial & Management Optimization, 2007, 3 (2) : 381-398. doi: 10.3934/jimo.2007.3.381

[18]

Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083

[19]

Daniel Gerth, Andreas Hofinger, Ronny Ramlau. On the lifting of deterministic convergence rates for inverse problems with stochastic noise. Inverse Problems & Imaging, 2017, 11 (4) : 663-687. doi: 10.3934/ipi.2017031

[20]

Stefano Galatolo, Isaia Nisoli, Benoît Saussol. An elementary way to rigorously estimate convergence to equilibrium and escape rates. Journal of Computational Dynamics, 2015, 2 (1) : 51-64. doi: 10.3934/jcd.2015.2.51

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]