November  2013, 12(6): 2797-2809. doi: 10.3934/cpaa.2013.12.2797

Analytic integrability for some degenerate planar systems

1. 

Department of Mathematics, University of Huelva, 21071-Huelva

2. 

Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69. 25001. Lleida.

Received  October 2012 Revised  February 2013 Published  May 2013

In the present paper we characterize the analytic integrability around the origin of a family of degenerate differential systems. Moreover, we study the analytic integrability of some degenerate systems through the orbital reversibility and from the existence of a Lie's symmetry for these systems. The results obtained for this family are similar to the results obtained when we characterize the analytic integrability of non-degenerate and nilpotent systems. The obtained results can be applied to compute the analytic integrable systems of any particular family of degenerate systems studied.
Citation: Antonio Algaba, Cristóbal García, Jaume Giné. Analytic integrability for some degenerate planar systems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2797-2809. doi: 10.3934/cpaa.2013.12.2797
References:
[1]

A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form,, Qual. Theory Dyn. Syst., 1 (2000), 133.  doi: 10.1007/BF02969475.  Google Scholar

[2]

A. Algaba, E. Freire, E. Gamero and C. García, Quasi-homogeneous normal forms,, J. Comput. Appl. Math., 150 (2003), 193.  doi: 10.1016/S0377-0427(02)00660-X.  Google Scholar

[3]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 395.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[4]

A. Algaba, C. García and M. Reyes, Like-linearizations of vector fields,, Bull. Sci. Math., 133 (2009), 806.  doi: 10.1016/j.bulsci.2009.09.006.  Google Scholar

[5]

A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields,, Nonlinear Anal., 73 (2010), 510.  doi: 10.1016/j.na.2010.03.046.  Google Scholar

[6]

A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems,, Nonlinear Anal., 72 (2010), 1726.  doi: 10.1016/j.na.2009.09.012.  Google Scholar

[7]

A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems,, Rocky Mountain J. Math., 41 (2011), 1.  doi: 10.1216/RMJ-2011-41-1-1.  Google Scholar

[8]

A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[9]

A. Algaba, C. García and M. Reyes, A note on analitic integrability of planar vector fields,, European J. Appl. Math., 23 (2012), 555.  doi: 10.1017/S0956792512000113.  Google Scholar

[10]

A. Algaba, E. Gamero and C. García, The reversibility problems for quasi-homogeneous dynamical systems,, Discrete Contin. Dyn. Syst., 33 (2013), 3225.   Google Scholar

[11]

M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents,, Ann. Inst. Fourier (Grenoble), 44 (1994), 465.  doi: 10.5802/aif.1406.  Google Scholar

[12]

A.D. Bruno, "Local Methods in Nonlinear Differential Equations,", Springer Verlag, (1989).   Google Scholar

[13]

J. Chavarriga, I. García, and J. Giné, Integrability of centers perturbed by quasi-homogeneous polynomials,, J. Math. Anal. Appl., 210 (1997), 268.  doi: 10.1006/jmaa.1997.5402.  Google Scholar

[14]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows,, J. Differential Equations, 157 (1999), 163.  doi: 10.1006/jdeq.1998.3621.  Google Scholar

[15]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory Dyn. Syst., 23 (2003), 417.  doi: 10.1017/S014338570200127X.  Google Scholar

[16]

A. Gasull, J. Llibre, V. Mañosa and F. Mañosas, The focus-centre problem for a type of degenerate system,, Nonlinearity, 13 (2000), 699.  doi: 10.1088/0951-7715/13/3/311.  Google Scholar

[17]

H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems,, J. Differential Equations, 227 (2006), 406.  doi: 10.1016/j.jde.2006.03.012.  Google Scholar

[18]

H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems",, J. Differential Equations, 232 (2007), 702.  doi: 10.1016/j.jde.2006.10.004.  Google Scholar

[19]

J. Giné, Sufficient conditions for a center at a completely degenerate critical point,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 1659.  doi: 10.1142/S0218127402005315.  Google Scholar

[20]

J. Giné, Analytic integrability and characterization of centers for generalized nilpotent singular points,, Appl. Math. Comput., 148 (2004), 849.  doi: 10.1016/S0096-3003(02)00941-4.  Google Scholar

[21]

J. Giné, On the centers of planar analytic differential systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3061.  doi: 10.1142/S0218127407018865.  Google Scholar

[22]

J. Giné, On the degenerate center problem,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 1383.  doi: 10.1142/S0218127411029082.  Google Scholar

[23]

J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation,, J. Math. Anal. Appl., 319 (2006), 326.  doi: 10.1016/j.jmaa.2005.10.017.  Google Scholar

[24]

J. B. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47.  doi: 10.1142/S0218127403006352.  Google Scholar

[25]

J.-F. Mattei and R. Moussu, Holonomie et intégrales premières,, Ann. Sci. \'Ecole Norm. Sup. (4), 13 (1980), 469.   Google Scholar

[26]

J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions,, SIAM Rev., 38 (1996), 619.  doi: 10.1137/S0036144595283575.  Google Scholar

[27]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Journal de Math\'ematiques, 37 (1881), 375.   Google Scholar

[28]

V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach,", Birkh\, (2009).  doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[29]

E. Strózyna and H. Żoładek, The analytic and normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479.  doi: 10.1006/jdeq.2001.4043.  Google Scholar

[30]

M. A. Teixeira and J. Yang, The center-focus problem and reversibility,, J. Differential Equations, 174 (2001), 237.  doi: /10.1006/jdeq.2000.3931.  Google Scholar

show all references

References:
[1]

A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form,, Qual. Theory Dyn. Syst., 1 (2000), 133.  doi: 10.1007/BF02969475.  Google Scholar

[2]

A. Algaba, E. Freire, E. Gamero and C. García, Quasi-homogeneous normal forms,, J. Comput. Appl. Math., 150 (2003), 193.  doi: 10.1016/S0377-0427(02)00660-X.  Google Scholar

[3]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 395.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[4]

A. Algaba, C. García and M. Reyes, Like-linearizations of vector fields,, Bull. Sci. Math., 133 (2009), 806.  doi: 10.1016/j.bulsci.2009.09.006.  Google Scholar

[5]

A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields,, Nonlinear Anal., 73 (2010), 510.  doi: 10.1016/j.na.2010.03.046.  Google Scholar

[6]

A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems,, Nonlinear Anal., 72 (2010), 1726.  doi: 10.1016/j.na.2009.09.012.  Google Scholar

[7]

A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems,, Rocky Mountain J. Math., 41 (2011), 1.  doi: 10.1216/RMJ-2011-41-1-1.  Google Scholar

[8]

A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[9]

A. Algaba, C. García and M. Reyes, A note on analitic integrability of planar vector fields,, European J. Appl. Math., 23 (2012), 555.  doi: 10.1017/S0956792512000113.  Google Scholar

[10]

A. Algaba, E. Gamero and C. García, The reversibility problems for quasi-homogeneous dynamical systems,, Discrete Contin. Dyn. Syst., 33 (2013), 3225.   Google Scholar

[11]

M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents,, Ann. Inst. Fourier (Grenoble), 44 (1994), 465.  doi: 10.5802/aif.1406.  Google Scholar

[12]

A.D. Bruno, "Local Methods in Nonlinear Differential Equations,", Springer Verlag, (1989).   Google Scholar

[13]

J. Chavarriga, I. García, and J. Giné, Integrability of centers perturbed by quasi-homogeneous polynomials,, J. Math. Anal. Appl., 210 (1997), 268.  doi: 10.1006/jmaa.1997.5402.  Google Scholar

[14]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows,, J. Differential Equations, 157 (1999), 163.  doi: 10.1006/jdeq.1998.3621.  Google Scholar

[15]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory Dyn. Syst., 23 (2003), 417.  doi: 10.1017/S014338570200127X.  Google Scholar

[16]

A. Gasull, J. Llibre, V. Mañosa and F. Mañosas, The focus-centre problem for a type of degenerate system,, Nonlinearity, 13 (2000), 699.  doi: 10.1088/0951-7715/13/3/311.  Google Scholar

[17]

H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems,, J. Differential Equations, 227 (2006), 406.  doi: 10.1016/j.jde.2006.03.012.  Google Scholar

[18]

H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems",, J. Differential Equations, 232 (2007), 702.  doi: 10.1016/j.jde.2006.10.004.  Google Scholar

[19]

J. Giné, Sufficient conditions for a center at a completely degenerate critical point,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 1659.  doi: 10.1142/S0218127402005315.  Google Scholar

[20]

J. Giné, Analytic integrability and characterization of centers for generalized nilpotent singular points,, Appl. Math. Comput., 148 (2004), 849.  doi: 10.1016/S0096-3003(02)00941-4.  Google Scholar

[21]

J. Giné, On the centers of planar analytic differential systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3061.  doi: 10.1142/S0218127407018865.  Google Scholar

[22]

J. Giné, On the degenerate center problem,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 1383.  doi: 10.1142/S0218127411029082.  Google Scholar

[23]

J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation,, J. Math. Anal. Appl., 319 (2006), 326.  doi: 10.1016/j.jmaa.2005.10.017.  Google Scholar

[24]

J. B. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47.  doi: 10.1142/S0218127403006352.  Google Scholar

[25]

J.-F. Mattei and R. Moussu, Holonomie et intégrales premières,, Ann. Sci. \'Ecole Norm. Sup. (4), 13 (1980), 469.   Google Scholar

[26]

J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions,, SIAM Rev., 38 (1996), 619.  doi: 10.1137/S0036144595283575.  Google Scholar

[27]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Journal de Math\'ematiques, 37 (1881), 375.   Google Scholar

[28]

V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach,", Birkh\, (2009).  doi: 10.1007/978-0-8176-4727-8.  Google Scholar

[29]

E. Strózyna and H. Żoładek, The analytic and normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479.  doi: 10.1006/jdeq.2001.4043.  Google Scholar

[30]

M. A. Teixeira and J. Yang, The center-focus problem and reversibility,, J. Differential Equations, 174 (2001), 237.  doi: /10.1006/jdeq.2000.3931.  Google Scholar

[1]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[2]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[3]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[4]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[5]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[6]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[9]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021004

[10]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[11]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[12]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004

[15]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[18]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[19]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]