November  2013, 12(6): 2797-2809. doi: 10.3934/cpaa.2013.12.2797

Analytic integrability for some degenerate planar systems

1. 

Department of Mathematics, University of Huelva, 21071-Huelva

2. 

Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69. 25001. Lleida.

Received  October 2012 Revised  February 2013 Published  May 2013

In the present paper we characterize the analytic integrability around the origin of a family of degenerate differential systems. Moreover, we study the analytic integrability of some degenerate systems through the orbital reversibility and from the existence of a Lie's symmetry for these systems. The results obtained for this family are similar to the results obtained when we characterize the analytic integrability of non-degenerate and nilpotent systems. The obtained results can be applied to compute the analytic integrable systems of any particular family of degenerate systems studied.
Citation: Antonio Algaba, Cristóbal García, Jaume Giné. Analytic integrability for some degenerate planar systems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2797-2809. doi: 10.3934/cpaa.2013.12.2797
References:
[1]

A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form,, Qual. Theory Dyn. Syst., 1 (2000), 133. doi: 10.1007/BF02969475. Google Scholar

[2]

A. Algaba, E. Freire, E. Gamero and C. García, Quasi-homogeneous normal forms,, J. Comput. Appl. Math., 150 (2003), 193. doi: 10.1016/S0377-0427(02)00660-X. Google Scholar

[3]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 395. doi: 10.1088/0951-7715/22/2/009. Google Scholar

[4]

A. Algaba, C. García and M. Reyes, Like-linearizations of vector fields,, Bull. Sci. Math., 133 (2009), 806. doi: 10.1016/j.bulsci.2009.09.006. Google Scholar

[5]

A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields,, Nonlinear Anal., 73 (2010), 510. doi: 10.1016/j.na.2010.03.046. Google Scholar

[6]

A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems,, Nonlinear Anal., 72 (2010), 1726. doi: 10.1016/j.na.2009.09.012. Google Scholar

[7]

A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems,, Rocky Mountain J. Math., 41 (2011), 1. doi: 10.1216/RMJ-2011-41-1-1. Google Scholar

[8]

A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419. doi: 10.1016/j.nonrwa.2011.07.056. Google Scholar

[9]

A. Algaba, C. García and M. Reyes, A note on analitic integrability of planar vector fields,, European J. Appl. Math., 23 (2012), 555. doi: 10.1017/S0956792512000113. Google Scholar

[10]

A. Algaba, E. Gamero and C. García, The reversibility problems for quasi-homogeneous dynamical systems,, Discrete Contin. Dyn. Syst., 33 (2013), 3225. Google Scholar

[11]

M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents,, Ann. Inst. Fourier (Grenoble), 44 (1994), 465. doi: 10.5802/aif.1406. Google Scholar

[12]

A.D. Bruno, "Local Methods in Nonlinear Differential Equations,", Springer Verlag, (1989). Google Scholar

[13]

J. Chavarriga, I. García, and J. Giné, Integrability of centers perturbed by quasi-homogeneous polynomials,, J. Math. Anal. Appl., 210 (1997), 268. doi: 10.1006/jmaa.1997.5402. Google Scholar

[14]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows,, J. Differential Equations, 157 (1999), 163. doi: 10.1006/jdeq.1998.3621. Google Scholar

[15]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory Dyn. Syst., 23 (2003), 417. doi: 10.1017/S014338570200127X. Google Scholar

[16]

A. Gasull, J. Llibre, V. Mañosa and F. Mañosas, The focus-centre problem for a type of degenerate system,, Nonlinearity, 13 (2000), 699. doi: 10.1088/0951-7715/13/3/311. Google Scholar

[17]

H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems,, J. Differential Equations, 227 (2006), 406. doi: 10.1016/j.jde.2006.03.012. Google Scholar

[18]

H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems",, J. Differential Equations, 232 (2007), 702. doi: 10.1016/j.jde.2006.10.004. Google Scholar

[19]

J. Giné, Sufficient conditions for a center at a completely degenerate critical point,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 1659. doi: 10.1142/S0218127402005315. Google Scholar

[20]

J. Giné, Analytic integrability and characterization of centers for generalized nilpotent singular points,, Appl. Math. Comput., 148 (2004), 849. doi: 10.1016/S0096-3003(02)00941-4. Google Scholar

[21]

J. Giné, On the centers of planar analytic differential systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3061. doi: 10.1142/S0218127407018865. Google Scholar

[22]

J. Giné, On the degenerate center problem,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 1383. doi: 10.1142/S0218127411029082. Google Scholar

[23]

J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation,, J. Math. Anal. Appl., 319 (2006), 326. doi: 10.1016/j.jmaa.2005.10.017. Google Scholar

[24]

J. B. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47. doi: 10.1142/S0218127403006352. Google Scholar

[25]

J.-F. Mattei and R. Moussu, Holonomie et intégrales premières,, Ann. Sci. \'Ecole Norm. Sup. (4), 13 (1980), 469. Google Scholar

[26]

J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions,, SIAM Rev., 38 (1996), 619. doi: 10.1137/S0036144595283575. Google Scholar

[27]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Journal de Math\'ematiques, 37 (1881), 375. Google Scholar

[28]

V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach,", Birkh\, (2009). doi: 10.1007/978-0-8176-4727-8. Google Scholar

[29]

E. Strózyna and H. Żoładek, The analytic and normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479. doi: 10.1006/jdeq.2001.4043. Google Scholar

[30]

M. A. Teixeira and J. Yang, The center-focus problem and reversibility,, J. Differential Equations, 174 (2001), 237. doi: /10.1006/jdeq.2000.3931. Google Scholar

show all references

References:
[1]

A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form,, Qual. Theory Dyn. Syst., 1 (2000), 133. doi: 10.1007/BF02969475. Google Scholar

[2]

A. Algaba, E. Freire, E. Gamero and C. García, Quasi-homogeneous normal forms,, J. Comput. Appl. Math., 150 (2003), 193. doi: 10.1016/S0377-0427(02)00660-X. Google Scholar

[3]

A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems,, Nonlinearity, 22 (2009), 395. doi: 10.1088/0951-7715/22/2/009. Google Scholar

[4]

A. Algaba, C. García and M. Reyes, Like-linearizations of vector fields,, Bull. Sci. Math., 133 (2009), 806. doi: 10.1016/j.bulsci.2009.09.006. Google Scholar

[5]

A. Algaba, C. García and M. A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields,, Nonlinear Anal., 73 (2010), 510. doi: 10.1016/j.na.2010.03.046. Google Scholar

[6]

A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems,, Nonlinear Anal., 72 (2010), 1726. doi: 10.1016/j.na.2009.09.012. Google Scholar

[7]

A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems,, Rocky Mountain J. Math., 41 (2011), 1. doi: 10.1216/RMJ-2011-41-1-1. Google Scholar

[8]

A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems,, Nonlinear Anal. Real World Appl., 13 (2012), 419. doi: 10.1016/j.nonrwa.2011.07.056. Google Scholar

[9]

A. Algaba, C. García and M. Reyes, A note on analitic integrability of planar vector fields,, European J. Appl. Math., 23 (2012), 555. doi: 10.1017/S0956792512000113. Google Scholar

[10]

A. Algaba, E. Gamero and C. García, The reversibility problems for quasi-homogeneous dynamical systems,, Discrete Contin. Dyn. Syst., 33 (2013), 3225. Google Scholar

[11]

M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents,, Ann. Inst. Fourier (Grenoble), 44 (1994), 465. doi: 10.5802/aif.1406. Google Scholar

[12]

A.D. Bruno, "Local Methods in Nonlinear Differential Equations,", Springer Verlag, (1989). Google Scholar

[13]

J. Chavarriga, I. García, and J. Giné, Integrability of centers perturbed by quasi-homogeneous polynomials,, J. Math. Anal. Appl., 210 (1997), 268. doi: 10.1006/jmaa.1997.5402. Google Scholar

[14]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of two-dimensional flows,, J. Differential Equations, 157 (1999), 163. doi: 10.1006/jdeq.1998.3621. Google Scholar

[15]

J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Local analytic integrability for nilpotent centers,, Ergodic Theory Dyn. Syst., 23 (2003), 417. doi: 10.1017/S014338570200127X. Google Scholar

[16]

A. Gasull, J. Llibre, V. Mañosa and F. Mañosas, The focus-centre problem for a type of degenerate system,, Nonlinearity, 13 (2000), 699. doi: 10.1088/0951-7715/13/3/311. Google Scholar

[17]

H. Giacomini, J. Giné and J. Llibre, The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems,, J. Differential Equations, 227 (2006), 406. doi: 10.1016/j.jde.2006.03.012. Google Scholar

[18]

H. Giacomini, J. Giné and J. Llibre, Corrigendum to:"The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems",, J. Differential Equations, 232 (2007), 702. doi: 10.1016/j.jde.2006.10.004. Google Scholar

[19]

J. Giné, Sufficient conditions for a center at a completely degenerate critical point,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 1659. doi: 10.1142/S0218127402005315. Google Scholar

[20]

J. Giné, Analytic integrability and characterization of centers for generalized nilpotent singular points,, Appl. Math. Comput., 148 (2004), 849. doi: 10.1016/S0096-3003(02)00941-4. Google Scholar

[21]

J. Giné, On the centers of planar analytic differential systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 3061. doi: 10.1142/S0218127407018865. Google Scholar

[22]

J. Giné, On the degenerate center problem,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), 1383. doi: 10.1142/S0218127411029082. Google Scholar

[23]

J. Giné and M. Grau, Linearizability and integrability of vector fields via commutation,, J. Math. Anal. Appl., 319 (2006), 326. doi: 10.1016/j.jmaa.2005.10.017. Google Scholar

[24]

J. B. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector fields,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 47. doi: 10.1142/S0218127403006352. Google Scholar

[25]

J.-F. Mattei and R. Moussu, Holonomie et intégrales premières,, Ann. Sci. \'Ecole Norm. Sup. (4), 13 (1980), 469. Google Scholar

[26]

J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions,, SIAM Rev., 38 (1996), 619. doi: 10.1137/S0036144595283575. Google Scholar

[27]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles,, Journal de Math\'ematiques, 37 (1881), 375. Google Scholar

[28]

V. G. Romanovski and D. S. Shafer, "The Center and Cyclicity Problems: A Computational Algebra Approach,", Birkh\, (2009). doi: 10.1007/978-0-8176-4727-8. Google Scholar

[29]

E. Strózyna and H. Żoładek, The analytic and normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479. doi: 10.1006/jdeq.2001.4043. Google Scholar

[30]

M. A. Teixeira and J. Yang, The center-focus problem and reversibility,, J. Differential Equations, 174 (2001), 237. doi: /10.1006/jdeq.2000.3931. Google Scholar

[1]

Armengol Gasull, Jaume Giné, Joan Torregrosa. Center problem for systems with two monomial nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 577-598. doi: 10.3934/cpaa.2016.15.577

[2]

Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1335-1350. doi: 10.3934/cpaa.2016.15.1335

[3]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[4]

Fabio Scalco Dias, Luis Fernando Mello. The center--focus problem and small amplitude limit cycles in rigid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1627-1637. doi: 10.3934/dcds.2012.32.1627

[5]

Balázs Boros, Josef Hofbauer, Stefan Müller, Georg Regensburger. Planar S-systems: Global stability and the center problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 707-727. doi: 10.3934/dcds.2019029

[6]

Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597

[7]

Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709

[8]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[9]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[10]

Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2657-2661. doi: 10.3934/dcdsb.2015.20.2657

[11]

Vladimir S. Gerdjikov, Rossen I. Ivanov, Aleksander A. Stefanov. Riemann-Hilbert problem, integrability and reductions. Journal of Geometric Mechanics, 2019, 11 (2) : 167-185. doi: 10.3934/jgm.2019009

[12]

Rafael Ortega, Andrés Rivera. Global bifurcations from the center of mass in the Sitnikov problem. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 719-732. doi: 10.3934/dcdsb.2010.14.719

[13]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[14]

Paola Mannucci. The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction. Communications on Pure & Applied Analysis, 2014, 13 (1) : 119-133. doi: 10.3934/cpaa.2014.13.119

[15]

Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299

[16]

P.K. Newton, M. Ruith, E. Upchurch. The constrained planar N-vortex problem: I. Integrability. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 137-152. doi: 10.3934/dcdsb.2005.5.137

[17]

Jaume Llibre, Roland Rabanal. Center conditions for a class of planar rigid polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1075-1090. doi: 10.3934/dcds.2015.35.1075

[18]

Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177

[19]

Roberto Castelli, Susanna Terracini. On the regularization of the collision solutions of the one-center problem with weak forces. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1197-1218. doi: 10.3934/dcds.2011.31.1197

[20]

Guowei Yu. Periodic solutions of the planar N-center problem with topological constraints. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5131-5162. doi: 10.3934/dcds.2016023

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]