• Previous Article
    Clustered interior phase transition layers for an inhomogeneous Allen-Cahn equation in higher dimensional domains
  • CPAA Home
  • This Issue
  • Next Article
    Gradient blowup solutions of a semilinear parabolic equation with exponential source
January  2013, 12(1): 281-302. doi: 10.3934/cpaa.2013.12.281

On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla

2. 

State University of Moldova, Department of Mathematics and Informatics, A. Mateevich Street 60, MD–2009 Chişinău

Received  June 2011 Revised  August 2011 Published  September 2011

The aim of this paper is to describe the structure of global attractors for infinite-dimensional non-autonomous dynamical systems with recurrent coefficients. We consider a special class of this type of systems (the so--called weak convergent systems). We study this problem in the framework of general non-autonomous dynamical systems (cocycles). In particular, we apply the general results obtained in our previous paper [6] to study the almost periodic (almost automorphic, recurrent, pseudo recurrent) and asymptotically almost periodic (asymptotically almost automorphic, asymptotically recurrent, asymptotically pseudo recurrent) solutions of different classes of differential equations (functional-differential equations, evolution equation with monotone operator, semi-linear parabolic equations).
Citation: Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281
References:
[1]

D. W. Boyd and J. S. W. Wong, On nonlinear contractions,, Proc. Amer. Math. Soc., 20 (1969), 458.   Google Scholar

[2]

H. Brezis, "Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert," Vol. 5 of Math. Studies,, North Holland, (1973).   Google Scholar

[3]

I. U. Bronsteyn, "Extensions of Minimal Transformation Group,", Noordhoff, (1979).   Google Scholar

[4]

F. E. Browder, On the convergence of successive approximations for nonlinear functional equations,, Nederl. Akad. Wetensch. Proc., 30 (1968), 27.   Google Scholar

[5]

T. Caraballo and D. N. Cheban, Levitan/Bohr almost periodic and almost automorphic solutions of second-order monotone differential equations,, Journal of Differential Equations, 251 (2011), 708.   Google Scholar

[6]

T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous dynamical systems with weak convergence,, Communications in Pure and Applied Analysis, 11 (2012).   Google Scholar

[7]

T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous difference equations with weak convergence,, Journal of Difference Equations and Applications, (2012).   Google Scholar

[8]

D. N. Cheban, "Global Attractors of Non-Autonomous Dissipative Dynamical Systems," Interdisciplinary Mathematical Sciences 1., River Edge, (2004).   Google Scholar

[9]

D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations,, J. Dynamics and Differential Equations, 20 (2008), 669.   Google Scholar

[10]

D. N. Cheban, "Asymptotically Almost Periodic Solutions of Differential Equations,", Hindawi Publishing Corporation, (2009).   Google Scholar

[11]

D. N. Cheban, "Global Attractors of Set-Valued Dynamical and Control Systems,", Nova Science Publishers, (2010).   Google Scholar

[12]

D. N. Cheban and B. Schmalfuß, Invariant manifolds, global attractors, almost automorphic and almost periodic solutions of non-autonomous differential equations,, J. Math. Anal. Appl., 340 (2008), 374.   Google Scholar

[13]

I. D. Chueshov, "Vvedenie v teoriyu beskonechnomernykh dissipativnykh sistem. Universitetskie Lektsii po Sovremennoi Matematike,", AKTA, (1999).   Google Scholar

[14]

C. Conley, "Isolated Invariant Sets and the Morse Index,", Region. Conf. Ser. Math., (1978).   Google Scholar

[15]

B. P. Demidovich, "Lectures on Mathematical Theory of Stability,", Moscow, (1967).   Google Scholar

[16]

A. M. Fink and P. O. Fredericson, Ultimate boundedness does not imply almost periodicity,, Journal of Differential Equations, 9 (1971), 280.   Google Scholar

[17]

J. K. Hale, "Theory of Functional-Differential Equations,", Springer-Verlag, (1977).   Google Scholar

[18]

J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).   Google Scholar

[19]

N. Hassani, "Systems Dynamiques Nonautonomes Contractants et leur Applications,", The\'ese de magister. Algerie, (1983).   Google Scholar

[20]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellers for semidynamical systems,, J. Dyn. Diff. Eqns., 13 (2001), 107.   Google Scholar

[21]

D. Husemoller, "Fibre Bundles,", Springer-Verlag, (1994).   Google Scholar

[22]

W. A. Kirk and B. Sims, "Handbook of Metric Fixed Point Theory,", Kluwer Academic Publishers, ().   Google Scholar

[23]

P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic,, Nonlinear Analysis TMA, 74 (2011), 2695.   Google Scholar

[24]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge Univ. Press, (1982).   Google Scholar

[25]

J. L. Lions, "Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires,", Dunod, (1969).   Google Scholar

[26]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence,, Differential Equations, 11 (1975), 1246.   Google Scholar

[27]

G. R. Sell, "Topological Dynamics and Ordinary Differential Equations,", Van Nostrand-Reinhold, (1971).   Google Scholar

[28]

T. Yoshizawa, "Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions," Applied Mathematical Sciences, Vol. 14,, Springer-Verlag, (1975).   Google Scholar

[29]

V. V. Zhikov, On Stability and Unstability of Levinson's centre,, Differentsial'nye Uravneniya, 8 (1972), 2167.   Google Scholar

[30]

V. V. Zhikov, Monotonicity in the theory of almost periodic solutions of non-linear operator equations,, Mat. Sbornik, 90 (1973), 214.   Google Scholar

show all references

References:
[1]

D. W. Boyd and J. S. W. Wong, On nonlinear contractions,, Proc. Amer. Math. Soc., 20 (1969), 458.   Google Scholar

[2]

H. Brezis, "Operateurs Maximaux Monotones et Semigroupes de Contractions dans les Espaces de Hilbert," Vol. 5 of Math. Studies,, North Holland, (1973).   Google Scholar

[3]

I. U. Bronsteyn, "Extensions of Minimal Transformation Group,", Noordhoff, (1979).   Google Scholar

[4]

F. E. Browder, On the convergence of successive approximations for nonlinear functional equations,, Nederl. Akad. Wetensch. Proc., 30 (1968), 27.   Google Scholar

[5]

T. Caraballo and D. N. Cheban, Levitan/Bohr almost periodic and almost automorphic solutions of second-order monotone differential equations,, Journal of Differential Equations, 251 (2011), 708.   Google Scholar

[6]

T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous dynamical systems with weak convergence,, Communications in Pure and Applied Analysis, 11 (2012).   Google Scholar

[7]

T. Caraballo and D. N. Cheban, On the structure of the global attractor for non-autonomous difference equations with weak convergence,, Journal of Difference Equations and Applications, (2012).   Google Scholar

[8]

D. N. Cheban, "Global Attractors of Non-Autonomous Dissipative Dynamical Systems," Interdisciplinary Mathematical Sciences 1., River Edge, (2004).   Google Scholar

[9]

D. N. Cheban, Levitan almost periodic and almost automorphic solutions of $V$-monotone differential equations,, J. Dynamics and Differential Equations, 20 (2008), 669.   Google Scholar

[10]

D. N. Cheban, "Asymptotically Almost Periodic Solutions of Differential Equations,", Hindawi Publishing Corporation, (2009).   Google Scholar

[11]

D. N. Cheban, "Global Attractors of Set-Valued Dynamical and Control Systems,", Nova Science Publishers, (2010).   Google Scholar

[12]

D. N. Cheban and B. Schmalfuß, Invariant manifolds, global attractors, almost automorphic and almost periodic solutions of non-autonomous differential equations,, J. Math. Anal. Appl., 340 (2008), 374.   Google Scholar

[13]

I. D. Chueshov, "Vvedenie v teoriyu beskonechnomernykh dissipativnykh sistem. Universitetskie Lektsii po Sovremennoi Matematike,", AKTA, (1999).   Google Scholar

[14]

C. Conley, "Isolated Invariant Sets and the Morse Index,", Region. Conf. Ser. Math., (1978).   Google Scholar

[15]

B. P. Demidovich, "Lectures on Mathematical Theory of Stability,", Moscow, (1967).   Google Scholar

[16]

A. M. Fink and P. O. Fredericson, Ultimate boundedness does not imply almost periodicity,, Journal of Differential Equations, 9 (1971), 280.   Google Scholar

[17]

J. K. Hale, "Theory of Functional-Differential Equations,", Springer-Verlag, (1977).   Google Scholar

[18]

J. K. Hale, "Asymptotic Behaviour of Dissipative Systems,", Amer. Math. Soc., (1988).   Google Scholar

[19]

N. Hassani, "Systems Dynamiques Nonautonomes Contractants et leur Applications,", The\'ese de magister. Algerie, (1983).   Google Scholar

[20]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellers for semidynamical systems,, J. Dyn. Diff. Eqns., 13 (2001), 107.   Google Scholar

[21]

D. Husemoller, "Fibre Bundles,", Springer-Verlag, (1994).   Google Scholar

[22]

W. A. Kirk and B. Sims, "Handbook of Metric Fixed Point Theory,", Kluwer Academic Publishers, ().   Google Scholar

[23]

P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic,, Nonlinear Analysis TMA, 74 (2011), 2695.   Google Scholar

[24]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations,", Cambridge Univ. Press, (1982).   Google Scholar

[25]

J. L. Lions, "Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires,", Dunod, (1969).   Google Scholar

[26]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence,, Differential Equations, 11 (1975), 1246.   Google Scholar

[27]

G. R. Sell, "Topological Dynamics and Ordinary Differential Equations,", Van Nostrand-Reinhold, (1971).   Google Scholar

[28]

T. Yoshizawa, "Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions," Applied Mathematical Sciences, Vol. 14,, Springer-Verlag, (1975).   Google Scholar

[29]

V. V. Zhikov, On Stability and Unstability of Levinson's centre,, Differentsial'nye Uravneniya, 8 (1972), 2167.   Google Scholar

[30]

V. V. Zhikov, Monotonicity in the theory of almost periodic solutions of non-linear operator equations,, Mat. Sbornik, 90 (1973), 214.   Google Scholar

[1]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[2]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[3]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[6]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[7]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[8]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[9]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[12]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[13]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[14]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[15]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[16]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[18]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[19]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]