-
Previous Article
Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme
- CPAA Home
- This Issue
-
Next Article
Analytic integrability for some degenerate planar systems
Well-posedness and long time behavior of an Allen-Cahn type equation
1. | UMR 6086 CNRS. Laboratoire de Mathématiques et Applications - Université de Poitiers, SP2MI - Boulevard Marie et Pierre Curie - Téléport 2, BP30179 - 86962 Futuroscope Chasseneuil Cedex, France |
References:
[1] |
A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations, in"Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000)'', 47 (2001), 3455-3466.
doi: 10.1016/S0362-546X(01)00463-1. |
[2] |
M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, Weakly coupled dynamical systems and applications, Asymptotic Analysis, 30 (2002), 161-185. |
[3] |
A. Eden, C. Foias, B. Nicolaenko and R. and Temam, "Exponential Attractors for Dissipative Evolution Equations," Masson, Paris, 1994. |
[4] |
M.Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31. |
[5] |
G. Karali, and A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution, J. Differential Equations, 235 (2007), 418-438.
doi: 10.1016/j.jde.2006.12.021. |
[6] |
G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the Allen-Cahn equation, Nonlinear Anal., 72 (2010), 4271-4281.
doi: 10.1016/j.na.2010.02.003. |
[7] |
A. Katsoulakis and G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution, Phys. Rev. Lett., 84 (2000), 1511-1514.
doi: 10.1103/PhysRevLett.84.1511. |
[8] |
S. Mikhailov, M. Hildebrand and G. Ertl, Nonequilibrium nanostructures in condensed reactive systems, in "Coherent Structures in Complex Systems (Sitges, 2000),'' 567 (2001), 252-269.
doi: 10.1007/3-540-44698-2_16. |
[9] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in "Handbook of Differential Equations: Evolutionary Equations,'' Vol. IV, (2008), 103-200.
doi: 10.1016/S1874-5717(08)00003-0. |
[10] |
A. Miranville, Some generalizations of the Cahn-Hilliard equation, Asymptot. Anal., 22 (2000), 235-259. |
[11] |
A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua, Nonlinear Anal. Real World Appl., 2 (2001), 273-304.
doi: 10.1016/S0362-546X(00)00104-8. |
[12] |
C. Robinson, "Infinite-dimensional Dynamical Systems,'' Cambridge Universtity Press, Cambridge, 2001. |
[13] |
R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'' Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
show all references
References:
[1] |
A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations, in"Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000)'', 47 (2001), 3455-3466.
doi: 10.1016/S0362-546X(01)00463-1. |
[2] |
M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, Weakly coupled dynamical systems and applications, Asymptotic Analysis, 30 (2002), 161-185. |
[3] |
A. Eden, C. Foias, B. Nicolaenko and R. and Temam, "Exponential Attractors for Dissipative Evolution Equations," Masson, Paris, 1994. |
[4] |
M.Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31. |
[5] |
G. Karali, and A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution, J. Differential Equations, 235 (2007), 418-438.
doi: 10.1016/j.jde.2006.12.021. |
[6] |
G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the Allen-Cahn equation, Nonlinear Anal., 72 (2010), 4271-4281.
doi: 10.1016/j.na.2010.02.003. |
[7] |
A. Katsoulakis and G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution, Phys. Rev. Lett., 84 (2000), 1511-1514.
doi: 10.1103/PhysRevLett.84.1511. |
[8] |
S. Mikhailov, M. Hildebrand and G. Ertl, Nonequilibrium nanostructures in condensed reactive systems, in "Coherent Structures in Complex Systems (Sitges, 2000),'' 567 (2001), 252-269.
doi: 10.1007/3-540-44698-2_16. |
[9] |
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in "Handbook of Differential Equations: Evolutionary Equations,'' Vol. IV, (2008), 103-200.
doi: 10.1016/S1874-5717(08)00003-0. |
[10] |
A. Miranville, Some generalizations of the Cahn-Hilliard equation, Asymptot. Anal., 22 (2000), 235-259. |
[11] |
A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua, Nonlinear Anal. Real World Appl., 2 (2001), 273-304.
doi: 10.1016/S0362-546X(00)00104-8. |
[12] |
C. Robinson, "Infinite-dimensional Dynamical Systems,'' Cambridge Universtity Press, Cambridge, 2001. |
[13] |
R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'' Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8. |
[1] |
Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703 |
[2] |
Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111 |
[3] |
Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 |
[4] |
Hirokazu Ninomiya, Masaharu Taniguchi. Global stability of traveling curved fronts in the Allen-Cahn equations. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 819-832. doi: 10.3934/dcds.2006.15.819 |
[5] |
Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015 |
[6] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[7] |
Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Representation formulas of solutions and bifurcation sheets to a nonlocal Allen-Cahn equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4907-4925. doi: 10.3934/dcds.2020205 |
[8] |
Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems and Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679 |
[9] |
Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure and Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577 |
[10] |
Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319 |
[11] |
Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009 |
[12] |
Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024 |
[13] |
Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407 |
[14] |
Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4169-4190. doi: 10.3934/dcdsb.2019077 |
[15] |
Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717 |
[16] |
Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012 |
[17] |
Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations and Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517 |
[18] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345 |
[19] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015 |
[20] |
Suting Wei, Jun Yang. Clustering phase transition layers with boundary intersection for an inhomogeneous Allen-Cahn equation. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2575-2616. doi: 10.3934/cpaa.2020113 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]