November  2013, 12(6): 2811-2827. doi: 10.3934/cpaa.2013.12.2811

Well-posedness and long time behavior of an Allen-Cahn type equation

1. 

UMR 6086 CNRS. Laboratoire de Mathématiques et Applications - Université de Poitiers, SP2MI - Boulevard Marie et Pierre Curie - Téléport 2, BP30179 - 86962 Futuroscope Chasseneuil Cedex, France

Received  August 2011 Revised  January 2012 Published  May 2013

The aim of this article is to study the existence and uniqueness of solutions for an equation of Allen-Cahn type and to prove the existence of the finite-dimensional global attractor as well as the existence of exponential attractors.
Citation: Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811
References:
[1]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations,, in, 47 (2001), 3455.  doi: 10.1016/S0362-546X(01)00463-1.  Google Scholar

[2]

M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, Weakly coupled dynamical systems and applications,, Asymptotic Analysis, 30 (2002), 161.   Google Scholar

[3]

A. Eden, C. Foias, B. Nicolaenko and R. and Temam, "Exponential Attractors for Dissipative Evolution Equations,", Masson, (1994).   Google Scholar

[4]

M.Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11.   Google Scholar

[5]

G. Karali, and A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.  doi: 10.1016/j.jde.2006.12.021.  Google Scholar

[6]

G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the Allen-Cahn equation,, Nonlinear Anal., 72 (2010), 4271.  doi: 10.1016/j.na.2010.02.003.  Google Scholar

[7]

A. Katsoulakis and G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Lett., 84 (2000), 1511.  doi: 10.1103/PhysRevLett.84.1511.  Google Scholar

[8]

S. Mikhailov, M. Hildebrand and G. Ertl, Nonequilibrium nanostructures in condensed reactive systems,, in, 567 (2001), 252.  doi: 10.1007/3-540-44698-2_16.  Google Scholar

[9]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[10]

A. Miranville, Some generalizations of the Cahn-Hilliard equation,, Asymptot. Anal., 22 (2000), 235.   Google Scholar

[11]

A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua,, Nonlinear Anal. Real World Appl., 2 (2001), 273.  doi: 10.1016/S0362-546X(00)00104-8.  Google Scholar

[12]

C. Robinson, "Infinite-dimensional Dynamical Systems,'', Cambridge Universtity Press, (2001).   Google Scholar

[13]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'', Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

show all references

References:
[1]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations,, in, 47 (2001), 3455.  doi: 10.1016/S0362-546X(01)00463-1.  Google Scholar

[2]

M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, Weakly coupled dynamical systems and applications,, Asymptotic Analysis, 30 (2002), 161.   Google Scholar

[3]

A. Eden, C. Foias, B. Nicolaenko and R. and Temam, "Exponential Attractors for Dissipative Evolution Equations,", Masson, (1994).   Google Scholar

[4]

M.Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system,, Math. Nachr., 272 (2004), 11.   Google Scholar

[5]

G. Karali, and A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.  doi: 10.1016/j.jde.2006.12.021.  Google Scholar

[6]

G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the Allen-Cahn equation,, Nonlinear Anal., 72 (2010), 4271.  doi: 10.1016/j.na.2010.02.003.  Google Scholar

[7]

A. Katsoulakis and G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Lett., 84 (2000), 1511.  doi: 10.1103/PhysRevLett.84.1511.  Google Scholar

[8]

S. Mikhailov, M. Hildebrand and G. Ertl, Nonequilibrium nanostructures in condensed reactive systems,, in, 567 (2001), 252.  doi: 10.1007/3-540-44698-2_16.  Google Scholar

[9]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[10]

A. Miranville, Some generalizations of the Cahn-Hilliard equation,, Asymptot. Anal., 22 (2000), 235.   Google Scholar

[11]

A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua,, Nonlinear Anal. Real World Appl., 2 (2001), 273.  doi: 10.1016/S0362-546X(00)00104-8.  Google Scholar

[12]

C. Robinson, "Infinite-dimensional Dynamical Systems,'', Cambridge Universtity Press, (2001).   Google Scholar

[13]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'', Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[3]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[4]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[10]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]