November  2013, 12(6): 2811-2827. doi: 10.3934/cpaa.2013.12.2811

Well-posedness and long time behavior of an Allen-Cahn type equation

1. 

UMR 6086 CNRS. Laboratoire de Mathématiques et Applications - Université de Poitiers, SP2MI - Boulevard Marie et Pierre Curie - Téléport 2, BP30179 - 86962 Futuroscope Chasseneuil Cedex, France

Received  August 2011 Revised  January 2012 Published  May 2013

The aim of this article is to study the existence and uniqueness of solutions for an equation of Allen-Cahn type and to prove the existence of the finite-dimensional global attractor as well as the existence of exponential attractors.
Citation: Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811
References:
[1]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations, in"Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000)'', 47 (2001), 3455-3466. doi: 10.1016/S0362-546X(01)00463-1.

[2]

M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, Weakly coupled dynamical systems and applications, Asymptotic Analysis, 30 (2002), 161-185.

[3]

A. Eden, C. Foias, B. Nicolaenko and R. and Temam, "Exponential Attractors for Dissipative Evolution Equations," Masson, Paris, 1994.

[4]

M.Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31.

[5]

G. Karali, and A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution, J. Differential Equations, 235 (2007), 418-438. doi: 10.1016/j.jde.2006.12.021.

[6]

G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the Allen-Cahn equation, Nonlinear Anal., 72 (2010), 4271-4281. doi: 10.1016/j.na.2010.02.003.

[7]

A. Katsoulakis and G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution, Phys. Rev. Lett., 84 (2000), 1511-1514. doi: 10.1103/PhysRevLett.84.1511.

[8]

S. Mikhailov, M. Hildebrand and G. Ertl, Nonequilibrium nanostructures in condensed reactive systems, in "Coherent Structures in Complex Systems (Sitges, 2000),'' 567 (2001), 252-269. doi: 10.1007/3-540-44698-2_16.

[9]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in "Handbook of Differential Equations: Evolutionary Equations,'' Vol. IV, (2008), 103-200. doi: 10.1016/S1874-5717(08)00003-0.

[10]

A. Miranville, Some generalizations of the Cahn-Hilliard equation, Asymptot. Anal., 22 (2000), 235-259.

[11]

A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua, Nonlinear Anal. Real World Appl., 2 (2001), 273-304. doi: 10.1016/S0362-546X(00)00104-8.

[12]

C. Robinson, "Infinite-dimensional Dynamical Systems,'' Cambridge Universtity Press, Cambridge, 2001.

[13]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'' Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

show all references

References:
[1]

A. Bonfoh and A. Miranville, On Cahn-Hilliard-Gurtin equations, in"Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000)'', 47 (2001), 3455-3466. doi: 10.1016/S0362-546X(01)00463-1.

[2]

M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, Weakly coupled dynamical systems and applications, Asymptotic Analysis, 30 (2002), 161-185.

[3]

A. Eden, C. Foias, B. Nicolaenko and R. and Temam, "Exponential Attractors for Dissipative Evolution Equations," Masson, Paris, 1994.

[4]

M.Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272 (2004), 11-31.

[5]

G. Karali, and A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution, J. Differential Equations, 235 (2007), 418-438. doi: 10.1016/j.jde.2006.12.021.

[6]

G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the Allen-Cahn equation, Nonlinear Anal., 72 (2010), 4271-4281. doi: 10.1016/j.na.2010.02.003.

[7]

A. Katsoulakis and G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution, Phys. Rev. Lett., 84 (2000), 1511-1514. doi: 10.1103/PhysRevLett.84.1511.

[8]

S. Mikhailov, M. Hildebrand and G. Ertl, Nonequilibrium nanostructures in condensed reactive systems, in "Coherent Structures in Complex Systems (Sitges, 2000),'' 567 (2001), 252-269. doi: 10.1007/3-540-44698-2_16.

[9]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in "Handbook of Differential Equations: Evolutionary Equations,'' Vol. IV, (2008), 103-200. doi: 10.1016/S1874-5717(08)00003-0.

[10]

A. Miranville, Some generalizations of the Cahn-Hilliard equation, Asymptot. Anal., 22 (2000), 235-259.

[11]

A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua, Nonlinear Anal. Real World Appl., 2 (2001), 273-304. doi: 10.1016/S0362-546X(00)00104-8.

[12]

C. Robinson, "Infinite-dimensional Dynamical Systems,'' Cambridge Universtity Press, Cambridge, 2001.

[13]

R. Temam, "Infinite-dimensional Dynamical Systems in Mechanics and Physics,'' Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[1]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[2]

Luyi Ma, Hong-Tao Niu, Zhi-Cheng Wang. Global asymptotic stability of traveling waves to the Allen-Cahn equation with a fractional Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2457-2472. doi: 10.3934/cpaa.2019111

[3]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[4]

Hirokazu Ninomiya, Masaharu Taniguchi. Global stability of traveling curved fronts in the Allen-Cahn equations. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 819-832. doi: 10.3934/dcds.2006.15.819

[5]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[6]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[7]

Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Representation formulas of solutions and bifurcation sheets to a nonlocal Allen-Cahn equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4907-4925. doi: 10.3934/dcds.2020205

[8]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems and Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[9]

Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure and Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

[10]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[11]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

[12]

Eleonora Cinti. Saddle-shaped solutions for the fractional Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 441-463. doi: 10.3934/dcdss.2018024

[13]

Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407

[14]

Charles-Edouard Bréhier, Ludovic Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4169-4190. doi: 10.3934/dcdsb.2019077

[15]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[16]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[17]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations and Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[18]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345

[19]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015

[20]

Suting Wei, Jun Yang. Clustering phase transition layers with boundary intersection for an inhomogeneous Allen-Cahn equation. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2575-2616. doi: 10.3934/cpaa.2020113

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (106)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]