November  2013, 12(6): 2839-2872. doi: 10.3934/cpaa.2013.12.2839

Eigenvalues, bifurcation and one-sign solutions for the periodic $p$-Laplacian

1. 

Department of Mathematics, Northwest Normal University, Lanzhou, 730070, China, China

2. 

Division of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069-7100

Received  December 2012 Revised  February 2013 Published  May 2013

In this paper, we establish a unilateral global bifurcation result for a class of quasilinear periodic boundary problems with a sign-changing weight. By the Ljusternik-Schnirelmann theory, we first study the spectrum of the periodic $p$-Laplacian with the sign-changing weight. In particular, we show that there exist two simple, isolated, principal eigenvalues $\lambda_0^+$ and $\lambda_0^-$. Furthermore, under some natural hypotheses on perturbation function, we show that $(\lambda_0^\nu,0)$ is a bifurcation point of the above problems and there are two distinct unbounded sub-continua $C_\nu^{+}$ and $C_\nu^{-}$, consisting of the continuum $C_\nu$ emanating from $(\lambda_0^\nu, 0)$, where $\nu\in\{+,-\}$. As an application of the above result, we study the existence of one-sign solutions for a class of quasilinear periodic boundary problems with the sign-changing weight. Moreover, the uniqueness of one-sign solutions and the dependence of solutions on the parameter $\lambda$ are also studied.
Citation: Guowei Dai, Ruyun Ma, Haiyan Wang. Eigenvalues, bifurcation and one-sign solutions for the periodic $p$-Laplacian. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2839-2872. doi: 10.3934/cpaa.2013.12.2839
References:
[1]

M. S. Alber, R. Camassa, D. Holm and J. E. Marsden, The geometry of peaked solitons of a class of integrable PDE's,, Lett. Math. Phys., 32 (1994), 37. doi: 10.2307/2152750.

[2]

A. Ambrosetti, R. M. Calahorrano and F. R. Dobarro, Global branching for discontinuous problems,, Comment. Math. Univ. Carolin., 31 (1990), 213.

[3]

A. Ambrosetti and A. Malchiodi, "Nonlinear Analysis and Semilinear Elliptic Problems,", Cambridge Studies in Advanced Mathematics No. 104, (2007).

[4]

F. M. Atici and G. S. Guseinov, On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions,, J. Comput. Appl. Math., 132 (2001), 341.

[5]

P. A. Binding and B. P. Rynne, The spectrum of the periodic $p$-Laplacian,, J. Differentiable Equations, 235 (2007), 199.

[6]

P. A. Binding and B. P. Rynne, Variational and non-variational eigenvalues of the $p$-Laplacian,, J. Differentiable Equations, 244 (2008), 24.

[7]

H. Brezis, "Analyse Fonctioneile. Theéorie et Applications,", Masson, (1983).

[8]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.

[9]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.

[10]

A. Constantin, On the spectral problem for the periodic Camassa-Holm equation,, J. Math. Anal. Appl., 210 (1997), 215.

[11]

A. Constantin, A general-weighted Sturm-Liouville problem,, Ann. Sci. \'Ec. Norm. Sup\'er., 24 (1997), 767.

[12]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dynam. Res., 40 (2008), 175.

[13]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.

[14]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Commun. Pure Appl. Math., 52 (1999), 949.

[15]

M. Cuesta, Eigenvalue problems for the $p$-Laplacian wirh indefinite weights,, Electron. J. Differential Equations, 33 (2001), 1.

[16]

G. Dai, Bifurcation and nodal solutions for $p$-Laplacian problems with non-asymptotic nonlinearity at 0 or $\infty$,, Appl. Math. Lett., 26 (2013), 46.

[17]

G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for $p$-Laplacian,, J. Differential Equations, 252 (2012), 2448.

[18]

G. Dai, R. Ma and Y. Lu, Bifurcation from infinity and nodal solutions of quasilinear problems without signum condition,, J. Math. Anal. Appl., 397 (2013), 119.

[19]

G. Dai, et al., Global bifurcation and nodal solutions of $N$-dimensional $p$-Laplacian in unit ball,, Appl. Anal., (2013). doi: 10.1080/00036811.2012.678333.

[20]

E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems,, Indiana U. Math J., 23 (1974), 1069.

[21]

E. N. Dancer, Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one,, Bull. London Math. Soc., 34 (2002), 533.

[22]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1987).

[23]

M. Del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t,u)=0$, $u(0)=u(T)=0$, $p>1$,, J. Differential Equations, 80 (1989), 1.

[24]

M. Del Pino and R. Manásevich, Global bifurcation from the eigenvalues of the $p$-Lapiacian,, J. Differential Equations, 92 (1991), 226.

[25]

L. C. Evans, "Partial Differential Equations,", AMS, (1998).

[26]

X. L. Fan and X. Fan, A Knobloch-type result for $p(t)$-Laplacian systems,, J. Math. Anal. Appl., 282 (2003), 453.

[27]

X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problems,, Nonlinear Anal., 52 (2003), 1843.

[28]

J. R. Graef, L. Kong and H. Wang, Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem,, J. Differential Equations, 245 (2008), 1185.

[29]

B. Im, E. Lee and Y. H. Lee, A global bifurcation phenomena for second order singular boundary value problems,, J. Math. Anal. Appl., 308 (2005), 61.

[30]

D. Jiang et. al., Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces,, J. Math. Anal. Appl., 286 (2003), 563.

[31]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 455 (2002), 63.

[32]

M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics,, in, (2007), 31.

[33]

Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional $p$-Laplacian,, J. Differential Equations, 229 (2006), 229.

[34]

Y. Li, Positive doubly periodic solutions of nonlinear telegraph equations,, Nonlinear Anal., 55 (2003), 245.

[35]

W. Li and X. Liu, Eigenvalue problems for second-order nonlinear dynamic equations on time scales,, J. Math. Anal. Appl., 318 (2006), 578.

[36]

X. Liu and W. Li, Existence and uniqueness of positive periodic solutions of functional differential equations,, J. Math. Anal. Appl., 293 (2004), 28.

[37]

J. L\'opez-Gómez, "Spectral Theory and Nonlinear Functional Analysis,", Chapman and Hall/CRC, (2001).

[38]

R. Ma, Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems,, Appl. Math. Lett., 21 (2008), 754.

[39]

R. Ma and Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions,, Nonlinear Anal., 71 (2009), 4364.

[40]

R. Ma, J. Xu and X. Han, Global bifurcation of positive solutions of a second-order periodic boundary value problem with indefinite weight,, Nonlinear Anal., 74 (2011), 3379.

[41]

R. Ma, J. Xu and X. Han, Global structure of positive solutions for superlinear second-order periodic boundary value problems,, Appl. Math. Comput., 218 (2012), 5982.

[42]

J. Mawhin and M.Willem, "Critical Point Theory and Hamiltonian Systems,", Springer, (1989).

[43]

M. Montenego, Strong maximum principles for super-solutions of quasilinear elliptic equations,, Nonlinear Ana1., 37 (1999), 431.

[44]

D. O'Regan and H. Wang, Positive periodic solutions of systems of second order ordinary differential equations,, Positivity, 10 (2006), 285.

[45]

I. Peral, "Multiplicity of Solutions for the $p$-Laplacian,", ICTP SMR 990/1, (1997).

[46]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Funct. Anal., 7 (1971), 487.

[47]

P. H. Rabinowitz, On bifurcation from infinity,, J. Funct. Anal., 14 (1973), 462.

[48]

B. P. Rynne, $p$-Laplacian problems with jumping nonlinearities,, J. Differential Equations, 226 (2006), 501.

[49]

A. Szulkin, Ljusternik-Schnirelmann theory on $C^1$-manifolds,, Ann. I. H. Poincar\'e, 5 (1988), 119.

[50]

P. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel'skii fixed point theorem,, J. Differential Equations, 190 (2003), 643.

[51]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications,", Vol. II/B, (1985).

[52]

Z. Zhang and J. Wang, On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations,, J. Math. Anal. Appl., 281 (2003), 99.

show all references

References:
[1]

M. S. Alber, R. Camassa, D. Holm and J. E. Marsden, The geometry of peaked solitons of a class of integrable PDE's,, Lett. Math. Phys., 32 (1994), 37. doi: 10.2307/2152750.

[2]

A. Ambrosetti, R. M. Calahorrano and F. R. Dobarro, Global branching for discontinuous problems,, Comment. Math. Univ. Carolin., 31 (1990), 213.

[3]

A. Ambrosetti and A. Malchiodi, "Nonlinear Analysis and Semilinear Elliptic Problems,", Cambridge Studies in Advanced Mathematics No. 104, (2007).

[4]

F. M. Atici and G. S. Guseinov, On the existence of positive solutions for nonlinear differential equations with periodic boundary conditions,, J. Comput. Appl. Math., 132 (2001), 341.

[5]

P. A. Binding and B. P. Rynne, The spectrum of the periodic $p$-Laplacian,, J. Differentiable Equations, 235 (2007), 199.

[6]

P. A. Binding and B. P. Rynne, Variational and non-variational eigenvalues of the $p$-Laplacian,, J. Differentiable Equations, 244 (2008), 24.

[7]

H. Brezis, "Analyse Fonctioneile. Theéorie et Applications,", Masson, (1983).

[8]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.

[9]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1.

[10]

A. Constantin, On the spectral problem for the periodic Camassa-Holm equation,, J. Math. Anal. Appl., 210 (1997), 215.

[11]

A. Constantin, A general-weighted Sturm-Liouville problem,, Ann. Sci. \'Ec. Norm. Sup\'er., 24 (1997), 767.

[12]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dynam. Res., 40 (2008), 175.

[13]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.

[14]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Commun. Pure Appl. Math., 52 (1999), 949.

[15]

M. Cuesta, Eigenvalue problems for the $p$-Laplacian wirh indefinite weights,, Electron. J. Differential Equations, 33 (2001), 1.

[16]

G. Dai, Bifurcation and nodal solutions for $p$-Laplacian problems with non-asymptotic nonlinearity at 0 or $\infty$,, Appl. Math. Lett., 26 (2013), 46.

[17]

G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for $p$-Laplacian,, J. Differential Equations, 252 (2012), 2448.

[18]

G. Dai, R. Ma and Y. Lu, Bifurcation from infinity and nodal solutions of quasilinear problems without signum condition,, J. Math. Anal. Appl., 397 (2013), 119.

[19]

G. Dai, et al., Global bifurcation and nodal solutions of $N$-dimensional $p$-Laplacian in unit ball,, Appl. Anal., (2013). doi: 10.1080/00036811.2012.678333.

[20]

E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems,, Indiana U. Math J., 23 (1974), 1069.

[21]

E. N. Dancer, Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one,, Bull. London Math. Soc., 34 (2002), 533.

[22]

K. Deimling, "Nonlinear Functional Analysis,", Springer-Verlag, (1987).

[23]

M. Del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along $p$ of a Leray-Schauder degree result and existence for $(|u'|^{p-2}u')'+f(t,u)=0$, $u(0)=u(T)=0$, $p>1$,, J. Differential Equations, 80 (1989), 1.

[24]

M. Del Pino and R. Manásevich, Global bifurcation from the eigenvalues of the $p$-Lapiacian,, J. Differential Equations, 92 (1991), 226.

[25]

L. C. Evans, "Partial Differential Equations,", AMS, (1998).

[26]

X. L. Fan and X. Fan, A Knobloch-type result for $p(t)$-Laplacian systems,, J. Math. Anal. Appl., 282 (2003), 453.

[27]

X. L. Fan and Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problems,, Nonlinear Anal., 52 (2003), 1843.

[28]

J. R. Graef, L. Kong and H. Wang, Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem,, J. Differential Equations, 245 (2008), 1185.

[29]

B. Im, E. Lee and Y. H. Lee, A global bifurcation phenomena for second order singular boundary value problems,, J. Math. Anal. Appl., 308 (2005), 61.

[30]

D. Jiang et. al., Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces,, J. Math. Anal. Appl., 286 (2003), 563.

[31]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 455 (2002), 63.

[32]

M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics,, in, (2007), 31.

[33]

Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional $p$-Laplacian,, J. Differential Equations, 229 (2006), 229.

[34]

Y. Li, Positive doubly periodic solutions of nonlinear telegraph equations,, Nonlinear Anal., 55 (2003), 245.

[35]

W. Li and X. Liu, Eigenvalue problems for second-order nonlinear dynamic equations on time scales,, J. Math. Anal. Appl., 318 (2006), 578.

[36]

X. Liu and W. Li, Existence and uniqueness of positive periodic solutions of functional differential equations,, J. Math. Anal. Appl., 293 (2004), 28.

[37]

J. L\'opez-Gómez, "Spectral Theory and Nonlinear Functional Analysis,", Chapman and Hall/CRC, (2001).

[38]

R. Ma, Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems,, Appl. Math. Lett., 21 (2008), 754.

[39]

R. Ma and Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions,, Nonlinear Anal., 71 (2009), 4364.

[40]

R. Ma, J. Xu and X. Han, Global bifurcation of positive solutions of a second-order periodic boundary value problem with indefinite weight,, Nonlinear Anal., 74 (2011), 3379.

[41]

R. Ma, J. Xu and X. Han, Global structure of positive solutions for superlinear second-order periodic boundary value problems,, Appl. Math. Comput., 218 (2012), 5982.

[42]

J. Mawhin and M.Willem, "Critical Point Theory and Hamiltonian Systems,", Springer, (1989).

[43]

M. Montenego, Strong maximum principles for super-solutions of quasilinear elliptic equations,, Nonlinear Ana1., 37 (1999), 431.

[44]

D. O'Regan and H. Wang, Positive periodic solutions of systems of second order ordinary differential equations,, Positivity, 10 (2006), 285.

[45]

I. Peral, "Multiplicity of Solutions for the $p$-Laplacian,", ICTP SMR 990/1, (1997).

[46]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Funct. Anal., 7 (1971), 487.

[47]

P. H. Rabinowitz, On bifurcation from infinity,, J. Funct. Anal., 14 (1973), 462.

[48]

B. P. Rynne, $p$-Laplacian problems with jumping nonlinearities,, J. Differential Equations, 226 (2006), 501.

[49]

A. Szulkin, Ljusternik-Schnirelmann theory on $C^1$-manifolds,, Ann. I. H. Poincar\'e, 5 (1988), 119.

[50]

P. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel'skii fixed point theorem,, J. Differential Equations, 190 (2003), 643.

[51]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications,", Vol. II/B, (1985).

[52]

Z. Zhang and J. Wang, On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations,, J. Math. Anal. Appl., 281 (2003), 99.

[1]

Guowei Dai. Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5323-5345. doi: 10.3934/dcds.2016034

[2]

Guowei Dai, Ruyun Ma. Unilateral global bifurcation for $p$-Laplacian with non-$p-$1-linearization nonlinearity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 99-116. doi: 10.3934/dcds.2015.35.99

[3]

Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299

[4]

Michael Filippakis, Alexandru Kristály, Nikolaos S. Papageorgiou. Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 405-440. doi: 10.3934/dcds.2009.24.405

[5]

Shao-Yuan Huang. Global bifurcation and exact multiplicity of positive solutions for the one-dimensional Minkowski-curvature problem with sign-changing nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3267-3284. doi: 10.3934/cpaa.2019147

[6]

Leszek Gasiński, Nikolaos S. Papageorgiou. Three nontrivial solutions for periodic problems with the $p$-Laplacian and a $p$-superlinear nonlinearity. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1421-1437. doi: 10.3934/cpaa.2009.8.1421

[7]

Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093

[8]

Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p-$Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1813-1845. doi: 10.3934/dcds.2016.36.1813

[9]

Samir Adly, Daniel Goeleven, Dumitru Motreanu. Periodic and homoclinic solutions for a class of unilateral problems. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 579-590. doi: 10.3934/dcds.1997.3.579

[10]

Wenguo Shen. Unilateral global interval bifurcation for Kirchhoff type problems and its applications. Communications on Pure & Applied Analysis, 2018, 17 (1) : 21-37. doi: 10.3934/cpaa.2018002

[11]

Marek Galewski, Renata Wieteska. Multiple periodic solutions to a discrete $p^{(k)}$ - Laplacian problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2535-2547. doi: 10.3934/dcdsb.2014.19.2535

[12]

Yuxiang Zhang, Shiwang Ma. Some existence results on periodic and subharmonic solutions of ordinary $P$-Laplacian systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 251-260. doi: 10.3934/dcdsb.2009.12.251

[13]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[14]

Wenbin Liu, Zhaosheng Feng. Periodic solutions for $p$-Laplacian systems of Liénard-type. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1393-1400. doi: 10.3934/cpaa.2011.10.1393

[15]

Adam Lipowski, Bogdan Przeradzki, Katarzyna Szymańska-Dębowska. Periodic solutions to differential equations with a generalized p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2593-2601. doi: 10.3934/dcdsb.2014.19.2593

[16]

Shanming Ji, Jingxue Yin, Yutian Li. Positive periodic solutions of the weighted $p$-Laplacian with nonlinear sources. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2411-2439. doi: 10.3934/dcds.2018100

[17]

Po-Chun Huang, Shin-Hwa Wang, Tzung-Shin Yeh. Classification of bifurcation diagrams of a $P$-Laplacian nonpositone problem. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2297-2318. doi: 10.3934/cpaa.2013.12.2297

[18]

Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219

[19]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[20]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]