November  2013, 12(6): 2923-2933. doi: 10.3934/cpaa.2013.12.2923

A double saddle-node bifurcation theorem

1. 

Y.Y. Tseng Functional Analysis Research Center and School of Mathematics Science, Harbin Normal University, Harbin, Heilongjiang, 150025, China, China

2. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187

Received  September 2010 Revised  July 2012 Published  May 2013

In this paper, we consider an abstract equation $F(\lambda,u)=0$ with one parameter $\lambda$, where $F\in C^p(\mathbb{R} \times X, Y)$, $p\geq 2$, is a nonlinear differentiable mapping, and $X,Y$ are Banach spaces. We apply Lyapunov-Schmidt procedure and Morse Lemma to obtain a "double" saddle-node bifurcation theorem with a two-dimensional kernel. Applications include a perturbed problem and a semilinear elliptic equation.
Citation: Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923
References:
[1]

E. L. Allgower, K. Böhmer and M. Zhen, A complete bifurcation scenario for the $2$-d nonlinear Laplacian with Neumann boundary conditions on the unit square, in "Bifurcation and Chaos: Analysis, Algorithms, Applications" (Würzburg, 1990), 1-18, Internat. Ser. Numer. Math., 97, Birkhäuser, Basel, 1991. doi: 10.1007/978-3-0348-7004-7_1.

[2]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory," Springer-Verlag, New York-Berlin, 1982. doi: 10.1007/978-1-4613-8159-4.

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2.

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180. doi: 10.1007/BF00282325.

[5]

M. del Pino, J. García-Melián and M. Musso, Local bifurcation from the second eigenvalue of the Laplacian in a square, Proc. Amer. Math. Soc., 131 (2003), 3499-3505. doi: 10.1090/S0002-9939-03-06906-5.

[6]

M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., 32 (1979), 21-98. doi: 10.1002/cpa.3160320103.

[7]

H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs," Applied Mathematical Sciences, 156, Springer-Verlag, New York, 2004.

[8]

S. Krömer, T. J. Healey and H. Kielhöfer, Bifurcation with a two-dimensional kernel, J. Differential Equations, 220 (2006), 234-258. doi: 10.1016/j.jde.2005.02.008.

[9]

P. Liu and Y. W. Wang, The generalized saddle-node bifurcation of degenerate solution, Comment. Math. Prace Mat., 45 (2005), 145-150.

[10]

P. Liu, J. P. Shi and Y. W. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600. doi: 10.1016/j.jfa.2007.06.015.

[11]

M. Zhen, "Numerical Bifurcation Analysis for Reaction-diffusion Equations," Springer Series in Computational Mathematics, 28. Springer-Verlag, Berlin, 2000.

[12]

P. Rabier, A generalization of the implicit function theorem for mappings from $R^{n+1}$ into $R^n$ and its applications, J. Funct. Anal., 56 (1984), 145-170. doi: 10.1016/0022-1236(84)90085-5.

[13]

J. P. Shi, Saddle solutions of the balanced bistable diffusion equation, Comm. Pure Appl. Math., 55 (2002), 815-830. doi: 10.1002/cpa.3027.

[14]

S. D. Taliaferro, Bifurcation at multiple eigenvalues and stability of bifurcating solutions, J. Funct. Anal., 55 (1984), 247-275. doi: 10.1016/0022-1236(84)90012-0.

[15]

C. A. Tiahrt and A. B. Poore, A bifurcation analysis of the nonlinear parametric programming problem, Math. Programming (Ser. A), 47 (1990), 117-141. doi: 10.1007/BF01580856.

[16]

J. F. Wang, J. P. Shi and Y. W. Wang, Bifurcation from the second eigenvalue of a class of semilinear elliptic equations, (Chinese) Natur. Sci. J. Harbin Normal Univ., 21 (2005), 1-4.

show all references

References:
[1]

E. L. Allgower, K. Böhmer and M. Zhen, A complete bifurcation scenario for the $2$-d nonlinear Laplacian with Neumann boundary conditions on the unit square, in "Bifurcation and Chaos: Analysis, Algorithms, Applications" (Würzburg, 1990), 1-18, Internat. Ser. Numer. Math., 97, Birkhäuser, Basel, 1991. doi: 10.1007/978-3-0348-7004-7_1.

[2]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory," Springer-Verlag, New York-Berlin, 1982. doi: 10.1007/978-1-4613-8159-4.

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2.

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180. doi: 10.1007/BF00282325.

[5]

M. del Pino, J. García-Melián and M. Musso, Local bifurcation from the second eigenvalue of the Laplacian in a square, Proc. Amer. Math. Soc., 131 (2003), 3499-3505. doi: 10.1090/S0002-9939-03-06906-5.

[6]

M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., 32 (1979), 21-98. doi: 10.1002/cpa.3160320103.

[7]

H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs," Applied Mathematical Sciences, 156, Springer-Verlag, New York, 2004.

[8]

S. Krömer, T. J. Healey and H. Kielhöfer, Bifurcation with a two-dimensional kernel, J. Differential Equations, 220 (2006), 234-258. doi: 10.1016/j.jde.2005.02.008.

[9]

P. Liu and Y. W. Wang, The generalized saddle-node bifurcation of degenerate solution, Comment. Math. Prace Mat., 45 (2005), 145-150.

[10]

P. Liu, J. P. Shi and Y. W. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600. doi: 10.1016/j.jfa.2007.06.015.

[11]

M. Zhen, "Numerical Bifurcation Analysis for Reaction-diffusion Equations," Springer Series in Computational Mathematics, 28. Springer-Verlag, Berlin, 2000.

[12]

P. Rabier, A generalization of the implicit function theorem for mappings from $R^{n+1}$ into $R^n$ and its applications, J. Funct. Anal., 56 (1984), 145-170. doi: 10.1016/0022-1236(84)90085-5.

[13]

J. P. Shi, Saddle solutions of the balanced bistable diffusion equation, Comm. Pure Appl. Math., 55 (2002), 815-830. doi: 10.1002/cpa.3027.

[14]

S. D. Taliaferro, Bifurcation at multiple eigenvalues and stability of bifurcating solutions, J. Funct. Anal., 55 (1984), 247-275. doi: 10.1016/0022-1236(84)90012-0.

[15]

C. A. Tiahrt and A. B. Poore, A bifurcation analysis of the nonlinear parametric programming problem, Math. Programming (Ser. A), 47 (1990), 117-141. doi: 10.1007/BF01580856.

[16]

J. F. Wang, J. P. Shi and Y. W. Wang, Bifurcation from the second eigenvalue of a class of semilinear elliptic equations, (Chinese) Natur. Sci. J. Harbin Normal Univ., 21 (2005), 1-4.

[1]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[2]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[3]

Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215

[4]

Ale Jan Homburg, Todd Young. Intermittency and Jakobson's theorem near saddle-node bifurcations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 21-58. doi: 10.3934/dcds.2007.17.21

[5]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[6]

Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069

[7]

Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205

[8]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[9]

Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911

[10]

Julián López-Gómez, Marcela Molina-Meyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 923-946. doi: 10.3934/dcdsb.2017047

[11]

Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure and Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583

[12]

Freddy Dumortier, Robert Roussarie. Bifurcation of relaxation oscillations in dimension two. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 631-674. doi: 10.3934/dcds.2007.19.631

[13]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control and Related Fields, 2022, 12 (1) : 225-243. doi: 10.3934/mcrf.2021019

[14]

Zuolin Shen, Yang Liu, Junjie Wei. Double Hopf bifurcation in nonlocal reaction-diffusion systems with spatial average kernel. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022176

[15]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[16]

Mauro Garavello, Paola Goatin. The Cauchy problem at a node with buffer. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1915-1938. doi: 10.3934/dcds.2012.32.1915

[17]

Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834

[18]

Lixia Duan, Zhuoqin Yang, Shenquan Liu, Dunwei Gong. Bursting and two-parameter bifurcation in the Chay neuronal model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 445-456. doi: 10.3934/dcdsb.2011.16.445

[19]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[20]

Li Ma, Shangjiang Guo. Bifurcation and stability of a two-species diffusive Lotka-Volterra model. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1205-1232. doi: 10.3934/cpaa.2020056

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]