November  2013, 12(6): 2923-2933. doi: 10.3934/cpaa.2013.12.2923

A double saddle-node bifurcation theorem

1. 

Y.Y. Tseng Functional Analysis Research Center and School of Mathematics Science, Harbin Normal University, Harbin, Heilongjiang, 150025, China, China

2. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187

Received  September 2010 Revised  July 2012 Published  May 2013

In this paper, we consider an abstract equation $F(\lambda,u)=0$ with one parameter $\lambda$, where $F\in C^p(\mathbb{R} \times X, Y)$, $p\geq 2$, is a nonlinear differentiable mapping, and $X,Y$ are Banach spaces. We apply Lyapunov-Schmidt procedure and Morse Lemma to obtain a "double" saddle-node bifurcation theorem with a two-dimensional kernel. Applications include a perturbed problem and a semilinear elliptic equation.
Citation: Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923
References:
[1]

E. L. Allgower, K. Böhmer and M. Zhen, A complete bifurcation scenario for the $2$-d nonlinear Laplacian with Neumann boundary conditions on the unit square,, in, (1990), 1.  doi: 10.1007/978-3-0348-7004-7_1.  Google Scholar

[2]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Springer-Verlag, (1982).  doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161.  doi: 10.1007/BF00282325.  Google Scholar

[5]

M. del Pino, J. García-Melián and M. Musso, Local bifurcation from the second eigenvalue of the Laplacian in a square,, Proc. Amer. Math. Soc., 131 (2003), 3499.  doi: 10.1090/S0002-9939-03-06906-5.  Google Scholar

[6]

M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory,, Comm. Pure Appl. Math., 32 (1979), 21.  doi: 10.1002/cpa.3160320103.  Google Scholar

[7]

H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs,", Applied Mathematical Sciences, 156 (2004).   Google Scholar

[8]

S. Krömer, T. J. Healey and H. Kielhöfer, Bifurcation with a two-dimensional kernel,, J. Differential Equations, 220 (2006), 234.  doi: 10.1016/j.jde.2005.02.008.  Google Scholar

[9]

P. Liu and Y. W. Wang, The generalized saddle-node bifurcation of degenerate solution,, Comment. Math. Prace Mat., 45 (2005), 145.   Google Scholar

[10]

P. Liu, J. P. Shi and Y. W. Wang, Imperfect transcritical and pitchfork bifurcations,, J. Funct. Anal., 251 (2007), 573.  doi: 10.1016/j.jfa.2007.06.015.  Google Scholar

[11]

M. Zhen, "Numerical Bifurcation Analysis for Reaction-diffusion Equations,", Springer Series in Computational Mathematics, 28 (2000).   Google Scholar

[12]

P. Rabier, A generalization of the implicit function theorem for mappings from $R^{n+1}$ into $R^n$ and its applications,, J. Funct. Anal., 56 (1984), 145.  doi: 10.1016/0022-1236(84)90085-5.  Google Scholar

[13]

J. P. Shi, Saddle solutions of the balanced bistable diffusion equation,, Comm. Pure Appl. Math., 55 (2002), 815.  doi: 10.1002/cpa.3027.  Google Scholar

[14]

S. D. Taliaferro, Bifurcation at multiple eigenvalues and stability of bifurcating solutions,, J. Funct. Anal., 55 (1984), 247.  doi: 10.1016/0022-1236(84)90012-0.  Google Scholar

[15]

C. A. Tiahrt and A. B. Poore, A bifurcation analysis of the nonlinear parametric programming problem,, Math. Programming (Ser. A), 47 (1990), 117.  doi: 10.1007/BF01580856.  Google Scholar

[16]

J. F. Wang, J. P. Shi and Y. W. Wang, Bifurcation from the second eigenvalue of a class of semilinear elliptic equations,, (Chinese) Natur. Sci. J. Harbin Normal Univ., 21 (2005), 1.   Google Scholar

show all references

References:
[1]

E. L. Allgower, K. Böhmer and M. Zhen, A complete bifurcation scenario for the $2$-d nonlinear Laplacian with Neumann boundary conditions on the unit square,, in, (1990), 1.  doi: 10.1007/978-3-0348-7004-7_1.  Google Scholar

[2]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Springer-Verlag, (1982).  doi: 10.1007/978-1-4613-8159-4.  Google Scholar

[3]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[4]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability,, Arch. Rational Mech. Anal., 52 (1973), 161.  doi: 10.1007/BF00282325.  Google Scholar

[5]

M. del Pino, J. García-Melián and M. Musso, Local bifurcation from the second eigenvalue of the Laplacian in a square,, Proc. Amer. Math. Soc., 131 (2003), 3499.  doi: 10.1090/S0002-9939-03-06906-5.  Google Scholar

[6]

M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory,, Comm. Pure Appl. Math., 32 (1979), 21.  doi: 10.1002/cpa.3160320103.  Google Scholar

[7]

H. Kielhöfer, "Bifurcation Theory. An Introduction with Applications to PDEs,", Applied Mathematical Sciences, 156 (2004).   Google Scholar

[8]

S. Krömer, T. J. Healey and H. Kielhöfer, Bifurcation with a two-dimensional kernel,, J. Differential Equations, 220 (2006), 234.  doi: 10.1016/j.jde.2005.02.008.  Google Scholar

[9]

P. Liu and Y. W. Wang, The generalized saddle-node bifurcation of degenerate solution,, Comment. Math. Prace Mat., 45 (2005), 145.   Google Scholar

[10]

P. Liu, J. P. Shi and Y. W. Wang, Imperfect transcritical and pitchfork bifurcations,, J. Funct. Anal., 251 (2007), 573.  doi: 10.1016/j.jfa.2007.06.015.  Google Scholar

[11]

M. Zhen, "Numerical Bifurcation Analysis for Reaction-diffusion Equations,", Springer Series in Computational Mathematics, 28 (2000).   Google Scholar

[12]

P. Rabier, A generalization of the implicit function theorem for mappings from $R^{n+1}$ into $R^n$ and its applications,, J. Funct. Anal., 56 (1984), 145.  doi: 10.1016/0022-1236(84)90085-5.  Google Scholar

[13]

J. P. Shi, Saddle solutions of the balanced bistable diffusion equation,, Comm. Pure Appl. Math., 55 (2002), 815.  doi: 10.1002/cpa.3027.  Google Scholar

[14]

S. D. Taliaferro, Bifurcation at multiple eigenvalues and stability of bifurcating solutions,, J. Funct. Anal., 55 (1984), 247.  doi: 10.1016/0022-1236(84)90012-0.  Google Scholar

[15]

C. A. Tiahrt and A. B. Poore, A bifurcation analysis of the nonlinear parametric programming problem,, Math. Programming (Ser. A), 47 (1990), 117.  doi: 10.1007/BF01580856.  Google Scholar

[16]

J. F. Wang, J. P. Shi and Y. W. Wang, Bifurcation from the second eigenvalue of a class of semilinear elliptic equations,, (Chinese) Natur. Sci. J. Harbin Normal Univ., 21 (2005), 1.   Google Scholar

[1]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[2]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[3]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[4]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[5]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[6]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[7]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[8]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[9]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[10]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[13]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[17]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]