November  2013, 12(6): 2947-2971. doi: 10.3934/cpaa.2013.12.2947

Free vibrations in space of the single mode for the Kirchhoff string

1. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Received  July 2012 Revised  January 2013 Published  May 2013

We study a single mode for the Kirchhoff string vibrating in space. In 3D a single mode is generally almost periodic in contrast to the 2D periodic case. In order to show a complete geometrical description of a single mode we prove some monotonicity properties of the almost periods of the solution, with respect to the mechanical energy and the momentum. As a consequence of these properties, we observe that a planar single mode in 3D is always unstable, while it is known that a single mode in 2D is stable (under a suitable definition of stability), if the energy is small.
Citation: Clelia Marchionna. Free vibrations in space of the single mode for the Kirchhoff string. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2947-2971. doi: 10.3934/cpaa.2013.12.2947
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Chapters 16, 17,, New York: Dover, (1964).   Google Scholar

[2]

L. P. Bonorino, E. H. M. Brietzke, J. P. Lukaszczyk and C. A. Taschetto, Properties of the period function for some Hamiltonian systems and homogeneous solutions of a semilinear elliptic equation,, J. Differential Equations, 214 (2005), 156.  doi: 10.1016/j.jde.2004.08.007.  Google Scholar

[3]

G. F. Carrier, On the non-linear vibration problem of an elastic string,, Q. Appl. Math., 3 (1945), 157.   Google Scholar

[4]

T. Cazenave and F. B. Weissler, Unstable simple modes of the nonlinear string,, Q. Appl. Math., 54 (1996), 287.   Google Scholar

[5]

C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields,, J. Differential Equations, 69 (1987), 310.  doi: 10.1016/0022-0396(87)90122-7.  Google Scholar

[6]

C. Chicone, "Ordinary Differential Equations with Applications,", Springer-Verlag, (2006).   Google Scholar

[7]

A. Cima, A. Gasull and F. Mañosas, Period function for a class of Hamiltonian systems,, J. Differential Equations, 168 (2000), 180.  doi: 10.1006/jdeq.2000.3912.  Google Scholar

[8]

W. R. Dean, Note on the evaluation of an elliptic integral of the third kind,, J. London Math. Soc., 18 (1943), 130.  doi: 10.1112/jlms/s1-18.3.130.  Google Scholar

[9]

R. W. Dickey, Stability of periodic solutions of the non linear string,, Q. Appl. Math., 38 (): 253.   Google Scholar

[10]

G. Gallavotti, "The Elements of Mechanics,", Springer-Verlag, (1983).   Google Scholar

[11]

M. Ghisi and M. Gobbino, Stability of simple modes of the Kirchhoff equation,, Nonlinearity, 14 (2001), 1197.  doi: 10.1088/0951-7715/14/5/314.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Chapters 16, 17,, New York: Dover, (1964).   Google Scholar

[2]

L. P. Bonorino, E. H. M. Brietzke, J. P. Lukaszczyk and C. A. Taschetto, Properties of the period function for some Hamiltonian systems and homogeneous solutions of a semilinear elliptic equation,, J. Differential Equations, 214 (2005), 156.  doi: 10.1016/j.jde.2004.08.007.  Google Scholar

[3]

G. F. Carrier, On the non-linear vibration problem of an elastic string,, Q. Appl. Math., 3 (1945), 157.   Google Scholar

[4]

T. Cazenave and F. B. Weissler, Unstable simple modes of the nonlinear string,, Q. Appl. Math., 54 (1996), 287.   Google Scholar

[5]

C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields,, J. Differential Equations, 69 (1987), 310.  doi: 10.1016/0022-0396(87)90122-7.  Google Scholar

[6]

C. Chicone, "Ordinary Differential Equations with Applications,", Springer-Verlag, (2006).   Google Scholar

[7]

A. Cima, A. Gasull and F. Mañosas, Period function for a class of Hamiltonian systems,, J. Differential Equations, 168 (2000), 180.  doi: 10.1006/jdeq.2000.3912.  Google Scholar

[8]

W. R. Dean, Note on the evaluation of an elliptic integral of the third kind,, J. London Math. Soc., 18 (1943), 130.  doi: 10.1112/jlms/s1-18.3.130.  Google Scholar

[9]

R. W. Dickey, Stability of periodic solutions of the non linear string,, Q. Appl. Math., 38 (): 253.   Google Scholar

[10]

G. Gallavotti, "The Elements of Mechanics,", Springer-Verlag, (1983).   Google Scholar

[11]

M. Ghisi and M. Gobbino, Stability of simple modes of the Kirchhoff equation,, Nonlinearity, 14 (2001), 1197.  doi: 10.1088/0951-7715/14/5/314.  Google Scholar

[1]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[2]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[3]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[4]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[5]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[6]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[7]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[8]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[9]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[10]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[11]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[12]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[13]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[14]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[15]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020288

[16]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[17]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[18]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[19]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[20]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]