\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Free vibrations in space of the single mode for the Kirchhoff string

Abstract Related Papers Cited by
  • We study a single mode for the Kirchhoff string vibrating in space. In 3D a single mode is generally almost periodic in contrast to the 2D periodic case. In order to show a complete geometrical description of a single mode we prove some monotonicity properties of the almost periods of the solution, with respect to the mechanical energy and the momentum. As a consequence of these properties, we observe that a planar single mode in 3D is always unstable, while it is known that a single mode in 2D is stable (under a suitable definition of stability), if the energy is small.
    Mathematics Subject Classification: Primary: 34C25; Secondary: 35L70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Chapters 16, 17, New York: Dover, National bureau of standards, 1964.

    [2]

    L. P. Bonorino, E. H. M. Brietzke, J. P. Lukaszczyk and C. A. Taschetto, Properties of the period function for some Hamiltonian systems and homogeneous solutions of a semilinear elliptic equation, J. Differential Equations, 214 (2005), 156-175.doi: 10.1016/j.jde.2004.08.007.

    [3]

    G. F. Carrier, On the non-linear vibration problem of an elastic string, Q. Appl. Math., 3 (1945), 157-165.

    [4]

    T. Cazenave and F. B. Weissler, Unstable simple modes of the nonlinear string, Q. Appl. Math., 54 (1996), 287-305.

    [5]

    C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations, 69 (1987), 310-321.doi: 10.1016/0022-0396(87)90122-7.

    [6]

    C. Chicone, "Ordinary Differential Equations with Applications," Springer-Verlag, New York, 2006.

    [7]

    A. Cima, A. Gasull and F. Mañosas, Period function for a class of Hamiltonian systems, J. Differential Equations, 168 (2000), 180-199.doi: 10.1006/jdeq.2000.3912.

    [8]

    W. R. Dean, Note on the evaluation of an elliptic integral of the third kind, J. London Math. Soc., 18 (1943), 130-132.doi: 10.1112/jlms/s1-18.3.130.

    [9]

    R. W. DickeyStability of periodic solutions of the non linear string, Q. Appl. Math., 38 (1980/81), 253-259.

    [10]

    G. Gallavotti, "The Elements of Mechanics," Springer-Verlag, New York, 1983. Also available from: Ipparco Editore, 2007. http://ipparco.roma1.infn.it/pagine/deposito/2007/elements.pdf.

    [11]

    M. Ghisi and M. Gobbino, Stability of simple modes of the Kirchhoff equation, Nonlinearity, 14 (2001), 1197-1220.doi: 10.1088/0951-7715/14/5/314.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return