November  2013, 12(6): 2947-2971. doi: 10.3934/cpaa.2013.12.2947

Free vibrations in space of the single mode for the Kirchhoff string

1. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Received  July 2012 Revised  January 2013 Published  May 2013

We study a single mode for the Kirchhoff string vibrating in space. In 3D a single mode is generally almost periodic in contrast to the 2D periodic case. In order to show a complete geometrical description of a single mode we prove some monotonicity properties of the almost periods of the solution, with respect to the mechanical energy and the momentum. As a consequence of these properties, we observe that a planar single mode in 3D is always unstable, while it is known that a single mode in 2D is stable (under a suitable definition of stability), if the energy is small.
Citation: Clelia Marchionna. Free vibrations in space of the single mode for the Kirchhoff string. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2947-2971. doi: 10.3934/cpaa.2013.12.2947
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Chapters 16, 17,, New York: Dover, (1964). Google Scholar

[2]

L. P. Bonorino, E. H. M. Brietzke, J. P. Lukaszczyk and C. A. Taschetto, Properties of the period function for some Hamiltonian systems and homogeneous solutions of a semilinear elliptic equation,, J. Differential Equations, 214 (2005), 156. doi: 10.1016/j.jde.2004.08.007. Google Scholar

[3]

G. F. Carrier, On the non-linear vibration problem of an elastic string,, Q. Appl. Math., 3 (1945), 157. Google Scholar

[4]

T. Cazenave and F. B. Weissler, Unstable simple modes of the nonlinear string,, Q. Appl. Math., 54 (1996), 287. Google Scholar

[5]

C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields,, J. Differential Equations, 69 (1987), 310. doi: 10.1016/0022-0396(87)90122-7. Google Scholar

[6]

C. Chicone, "Ordinary Differential Equations with Applications,", Springer-Verlag, (2006). Google Scholar

[7]

A. Cima, A. Gasull and F. Mañosas, Period function for a class of Hamiltonian systems,, J. Differential Equations, 168 (2000), 180. doi: 10.1006/jdeq.2000.3912. Google Scholar

[8]

W. R. Dean, Note on the evaluation of an elliptic integral of the third kind,, J. London Math. Soc., 18 (1943), 130. doi: 10.1112/jlms/s1-18.3.130. Google Scholar

[9]

R. W. Dickey, Stability of periodic solutions of the non linear string,, Q. Appl. Math., 38 (): 253. Google Scholar

[10]

G. Gallavotti, "The Elements of Mechanics,", Springer-Verlag, (1983). Google Scholar

[11]

M. Ghisi and M. Gobbino, Stability of simple modes of the Kirchhoff equation,, Nonlinearity, 14 (2001), 1197. doi: 10.1088/0951-7715/14/5/314. Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Chapters 16, 17,, New York: Dover, (1964). Google Scholar

[2]

L. P. Bonorino, E. H. M. Brietzke, J. P. Lukaszczyk and C. A. Taschetto, Properties of the period function for some Hamiltonian systems and homogeneous solutions of a semilinear elliptic equation,, J. Differential Equations, 214 (2005), 156. doi: 10.1016/j.jde.2004.08.007. Google Scholar

[3]

G. F. Carrier, On the non-linear vibration problem of an elastic string,, Q. Appl. Math., 3 (1945), 157. Google Scholar

[4]

T. Cazenave and F. B. Weissler, Unstable simple modes of the nonlinear string,, Q. Appl. Math., 54 (1996), 287. Google Scholar

[5]

C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields,, J. Differential Equations, 69 (1987), 310. doi: 10.1016/0022-0396(87)90122-7. Google Scholar

[6]

C. Chicone, "Ordinary Differential Equations with Applications,", Springer-Verlag, (2006). Google Scholar

[7]

A. Cima, A. Gasull and F. Mañosas, Period function for a class of Hamiltonian systems,, J. Differential Equations, 168 (2000), 180. doi: 10.1006/jdeq.2000.3912. Google Scholar

[8]

W. R. Dean, Note on the evaluation of an elliptic integral of the third kind,, J. London Math. Soc., 18 (1943), 130. doi: 10.1112/jlms/s1-18.3.130. Google Scholar

[9]

R. W. Dickey, Stability of periodic solutions of the non linear string,, Q. Appl. Math., 38 (): 253. Google Scholar

[10]

G. Gallavotti, "The Elements of Mechanics,", Springer-Verlag, (1983). Google Scholar

[11]

M. Ghisi and M. Gobbino, Stability of simple modes of the Kirchhoff equation,, Nonlinearity, 14 (2001), 1197. doi: 10.1088/0951-7715/14/5/314. Google Scholar

[1]

Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations & Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029

[2]

Josselin Garnier. The role of evanescent modes in randomly perturbed single-mode waveguides. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 455-472. doi: 10.3934/dcdsb.2007.8.455

[3]

Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi. Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences & Engineering, 2012, 9 (2) : 297-312. doi: 10.3934/mbe.2012.9.297

[4]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[5]

Eva Sincich, Mourad Sini. Local stability for soft obstacles by a single measurement. Inverse Problems & Imaging, 2008, 2 (2) : 301-315. doi: 10.3934/ipi.2008.2.301

[6]

Riccardo Adami, Diego Noja, Cecilia Ortoleva. Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5837-5879. doi: 10.3934/dcds.2016057

[7]

Cyrine Fitouri, Alain Haraux. Boundedness and stability for the damped and forced single well Duffing equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 211-223. doi: 10.3934/dcds.2013.33.211

[8]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[9]

Sergei A. Avdonin, Boris P. Belinskiy. Controllability of a string under tension. Conference Publications, 2003, 2003 (Special) : 57-67. doi: 10.3934/proc.2003.2003.57

[10]

Alexandra Rodkina, Henri Schurz, Leonid Shaikhet. Almost sure stability of some stochastic dynamical systems with memory. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 571-593. doi: 10.3934/dcds.2008.21.571

[11]

Vittorino Pata. Exponential stability in linear viscoelasticity with almost flat memory kernels. Communications on Pure & Applied Analysis, 2010, 9 (3) : 721-730. doi: 10.3934/cpaa.2010.9.721

[12]

Yoshihiro Hamaya. Stability properties and existence of almost periodic solutions of volterra difference equations. Conference Publications, 2009, 2009 (Special) : 315-321. doi: 10.3934/proc.2009.2009.315

[13]

Eduardo Liz. Local stability implies global stability in some one-dimensional discrete single-species models. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 191-199. doi: 10.3934/dcdsb.2007.7.191

[14]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[15]

Boju Jiang, Jaume Llibre. Minimal sets of periods for torus maps. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 301-320. doi: 10.3934/dcds.1998.4.301

[16]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

[17]

Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5657-5679. doi: 10.3934/dcds.2016048

[18]

Carlo Alabiso, Mario Casartelli. Quasi Normal modes in stochastic domains. Conference Publications, 2003, 2003 (Special) : 21-29. doi: 10.3934/proc.2003.2003.21

[19]

Stephen P. Shipman, Darko Volkov. Existence of guided modes on periodic slabs. Conference Publications, 2005, 2005 (Special) : 784-791. doi: 10.3934/proc.2005.2005.784

[20]

Dan Endres, Martin Kummer. Nonlinear normal modes for the isosceles DST. Conference Publications, 1998, 1998 (Special) : 231-241. doi: 10.3934/proc.1998.1998.231

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]