November  2013, 12(6): 3013-3026. doi: 10.3934/cpaa.2013.12.3013

On symmetry results for elliptic equations with convex nonlinearities

1. 

Department of Mathematical Sciences, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901

2. 

Dipartimento di Informatica, Università degli Studi di Verona, Cá Vignal 2, Strada Le Grazie 15, I-37134 Veron

Received  October 2012 Revised  March 2013 Published  May 2013

We investigate partial symmetry of solutions to semi-linear and quasi-linear elliptic problems with convex nonlinearities, in domains that are either axially symmetric or radially symmetric. The semi-linear problems are studied in a framework where the associated functional is of class $C^1$ but not of class $C^2$.
Citation: Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013
References:
[1]

T. Bartsch and M. Degiovanni, Nodal solutions of nonlinear elliptic Dirichlet problems on radial domains,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 17 (2006), 69.  doi: 10.4171/RLM/454.  Google Scholar

[2]

T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems,, J. Anal. Math., 96 (2005), 1.  doi: 10.1007/BF02787822.  Google Scholar

[3]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.  doi: 10.1088/0951-7715/23/6/006.  Google Scholar

[4]

M. Ghergu and V. Radulescu, "Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics,", Springer Monographs in Mathematics, (2011).   Google Scholar

[5]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[6]

F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations,, Adv. Nonlinear Anal., 1 (2012), 159.  doi: 10.1515/ana-2011-0001.  Google Scholar

[7]

F. Gladiali and M. Squassina, On explosive solutions for a class of quasi-linear elliptic equations,, Adv. Nonlinear Stud., ().   Google Scholar

[8]

F. Pacella, Symmetry results for solutions of semilinear elliptic equations with convex non-linearities,, J. Funct. Anal., 192 (2002), 271.  doi: 10.1006/jfan.2001.3901.  Google Scholar

[9]

F. Pacella and T. Weth, Symmetry of solutions to semilinear elliptic equations via Morse index,, Proc. Amer. Math. Soc., 135 (2007), 1753.  doi: 10.1090/S0002-9939-07-08652-2.  Google Scholar

[10]

V. Radulescu, "Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods,", Contemporary Mathematics and Its Applications, 6 (2008).  doi: 10.1155/9789774540394.  Google Scholar

[11]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304.  doi: 10.1007/BF00250468.  Google Scholar

[12]

D. Smets and M. Willem, Partial symmetry and asymptotic behaviour for some elliptic variational problems,, Calc. Var. Partial Differential Equations, 18 (2003), 57.  doi: 10.1007/s00526-002-0180-y.  Google Scholar

[13]

M. Squassina, Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems,, Electron. J. Differential Equations, 7 (2006).   Google Scholar

[14]

M. Squassina, Symmetry in variational principles and applications,, J. London Math. Soc., 85 (2012), 323.  doi: 10.1112/jlms/jdr046.  Google Scholar

show all references

References:
[1]

T. Bartsch and M. Degiovanni, Nodal solutions of nonlinear elliptic Dirichlet problems on radial domains,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 17 (2006), 69.  doi: 10.4171/RLM/454.  Google Scholar

[2]

T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems,, J. Anal. Math., 96 (2005), 1.  doi: 10.1007/BF02787822.  Google Scholar

[3]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.  doi: 10.1088/0951-7715/23/6/006.  Google Scholar

[4]

M. Ghergu and V. Radulescu, "Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics,", Springer Monographs in Mathematics, (2011).   Google Scholar

[5]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[6]

F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations,, Adv. Nonlinear Anal., 1 (2012), 159.  doi: 10.1515/ana-2011-0001.  Google Scholar

[7]

F. Gladiali and M. Squassina, On explosive solutions for a class of quasi-linear elliptic equations,, Adv. Nonlinear Stud., ().   Google Scholar

[8]

F. Pacella, Symmetry results for solutions of semilinear elliptic equations with convex non-linearities,, J. Funct. Anal., 192 (2002), 271.  doi: 10.1006/jfan.2001.3901.  Google Scholar

[9]

F. Pacella and T. Weth, Symmetry of solutions to semilinear elliptic equations via Morse index,, Proc. Amer. Math. Soc., 135 (2007), 1753.  doi: 10.1090/S0002-9939-07-08652-2.  Google Scholar

[10]

V. Radulescu, "Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods,", Contemporary Mathematics and Its Applications, 6 (2008).  doi: 10.1155/9789774540394.  Google Scholar

[11]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304.  doi: 10.1007/BF00250468.  Google Scholar

[12]

D. Smets and M. Willem, Partial symmetry and asymptotic behaviour for some elliptic variational problems,, Calc. Var. Partial Differential Equations, 18 (2003), 57.  doi: 10.1007/s00526-002-0180-y.  Google Scholar

[13]

M. Squassina, Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems,, Electron. J. Differential Equations, 7 (2006).   Google Scholar

[14]

M. Squassina, Symmetry in variational principles and applications,, J. London Math. Soc., 85 (2012), 323.  doi: 10.1112/jlms/jdr046.  Google Scholar

[1]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[2]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[3]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[4]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[5]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

[6]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[7]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[8]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[9]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[10]

Guangyue Huang, Wenyi Chen. Uniqueness for the solution of semi-linear elliptic Neumann problems in $\mathbb R^3$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1269-1273. doi: 10.3934/cpaa.2008.7.1269

[11]

Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037

[12]

Y. Kabeya, Eiji Yanagida, Shoji Yotsutani. Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems. Communications on Pure & Applied Analysis, 2002, 1 (1) : 85-102. doi: 10.3934/cpaa.2002.1.85

[13]

Houda Mokrani. Semi-linear sub-elliptic equations on the Heisenberg group with a singular potential. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1619-1636. doi: 10.3934/cpaa.2009.8.1619

[14]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

[15]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[16]

Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure & Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237

[17]

Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure & Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018

[18]

Vitali Liskevich, Igor I. Skrypnik. Pointwise estimates for solutions of singular quasi-linear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1029-1042. doi: 10.3934/dcdss.2013.6.1029

[19]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[20]

Boris Buffoni, Laurent Landry. Multiplicity of homoclinic orbits in quasi-linear autonomous Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 75-116. doi: 10.3934/dcds.2010.27.75

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]