\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On symmetry results for elliptic equations with convex nonlinearities

Abstract Related Papers Cited by
  • We investigate partial symmetry of solutions to semi-linear and quasi-linear elliptic problems with convex nonlinearities, in domains that are either axially symmetric or radially symmetric. The semi-linear problems are studied in a framework where the associated functional is of class $C^1$ but not of class $C^2$.
    Mathematics Subject Classification: 35D99, 35J62, 58E05, 35J70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Bartsch and M. Degiovanni, Nodal solutions of nonlinear elliptic Dirichlet problems on radial domains, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 17 (2006), 69-85.doi: 10.4171/RLM/454.

    [2]

    T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math., 96 (2005), 1-18.doi: 10.1007/BF02787822.

    [3]

    M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations, Nonlinearity, 23 (2010), 1353-1385.doi: 10.1088/0951-7715/23/6/006.

    [4]

    M. Ghergu and V. Radulescu, "Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics," Springer Monographs in Mathematics, Springer Verlag, Heidelberg, xviii+392 pp., 2011.

    [5]

    B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.doi: 10.1007/BF01221125.

    [6]

    F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations, Adv. Nonlinear Anal., 1 (2012), 159-179.doi: 10.1515/ana-2011-0001.

    [7]

    F. Gladiali and M. SquassinaOn explosive solutions for a class of quasi-linear elliptic equations, Adv. Nonlinear Stud., to appear.

    [8]

    F. Pacella, Symmetry results for solutions of semilinear elliptic equations with convex non-linearities, J. Funct. Anal., 192 (2002), 271-282.doi: 10.1006/jfan.2001.3901.

    [9]

    F. Pacella and T. Weth, Symmetry of solutions to semilinear elliptic equations via Morse index, Proc. Amer. Math. Soc., 135 (2007), 1753-1762.doi: 10.1090/S0002-9939-07-08652-2.

    [10]

    V. Radulescu, "Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods," Contemporary Mathematics and Its Applications, 6, Hindawi, 210 pp., 2008.doi: 10.1155/9789774540394.

    [11]

    J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.doi: 10.1007/BF00250468.

    [12]

    D. Smets and M. Willem, Partial symmetry and asymptotic behaviour for some elliptic variational problems, Calc. Var. Partial Differential Equations, 18 (2003), 57-75.doi: 10.1007/s00526-002-0180-y.

    [13]

    M. Squassina, Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems, Electron. J. Differential Equations, Monograph 7, 2006, +213pp, Texas State University, USA.

    [14]

    M. Squassina, Symmetry in variational principles and applications, J. London Math. Soc., 85 (2012), 323-348.doi: 10.1112/jlms/jdr046.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return