November  2013, 12(6): 3013-3026. doi: 10.3934/cpaa.2013.12.3013

On symmetry results for elliptic equations with convex nonlinearities

1. 

Department of Mathematical Sciences, Florida Institute of Technology, 150 W University Blvd, Melbourne, FL 32901

2. 

Dipartimento di Informatica, Università degli Studi di Verona, Cá Vignal 2, Strada Le Grazie 15, I-37134 Veron

Received  October 2012 Revised  March 2013 Published  May 2013

We investigate partial symmetry of solutions to semi-linear and quasi-linear elliptic problems with convex nonlinearities, in domains that are either axially symmetric or radially symmetric. The semi-linear problems are studied in a framework where the associated functional is of class $C^1$ but not of class $C^2$.
Citation: Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013
References:
[1]

T. Bartsch and M. Degiovanni, Nodal solutions of nonlinear elliptic Dirichlet problems on radial domains,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 17 (2006), 69.  doi: 10.4171/RLM/454.  Google Scholar

[2]

T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems,, J. Anal. Math., 96 (2005), 1.  doi: 10.1007/BF02787822.  Google Scholar

[3]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.  doi: 10.1088/0951-7715/23/6/006.  Google Scholar

[4]

M. Ghergu and V. Radulescu, "Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics,", Springer Monographs in Mathematics, (2011).   Google Scholar

[5]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[6]

F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations,, Adv. Nonlinear Anal., 1 (2012), 159.  doi: 10.1515/ana-2011-0001.  Google Scholar

[7]

F. Gladiali and M. Squassina, On explosive solutions for a class of quasi-linear elliptic equations,, Adv. Nonlinear Stud., ().   Google Scholar

[8]

F. Pacella, Symmetry results for solutions of semilinear elliptic equations with convex non-linearities,, J. Funct. Anal., 192 (2002), 271.  doi: 10.1006/jfan.2001.3901.  Google Scholar

[9]

F. Pacella and T. Weth, Symmetry of solutions to semilinear elliptic equations via Morse index,, Proc. Amer. Math. Soc., 135 (2007), 1753.  doi: 10.1090/S0002-9939-07-08652-2.  Google Scholar

[10]

V. Radulescu, "Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods,", Contemporary Mathematics and Its Applications, 6 (2008).  doi: 10.1155/9789774540394.  Google Scholar

[11]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304.  doi: 10.1007/BF00250468.  Google Scholar

[12]

D. Smets and M. Willem, Partial symmetry and asymptotic behaviour for some elliptic variational problems,, Calc. Var. Partial Differential Equations, 18 (2003), 57.  doi: 10.1007/s00526-002-0180-y.  Google Scholar

[13]

M. Squassina, Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems,, Electron. J. Differential Equations, 7 (2006).   Google Scholar

[14]

M. Squassina, Symmetry in variational principles and applications,, J. London Math. Soc., 85 (2012), 323.  doi: 10.1112/jlms/jdr046.  Google Scholar

show all references

References:
[1]

T. Bartsch and M. Degiovanni, Nodal solutions of nonlinear elliptic Dirichlet problems on radial domains,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 17 (2006), 69.  doi: 10.4171/RLM/454.  Google Scholar

[2]

T. Bartsch, T. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems,, J. Anal. Math., 96 (2005), 1.  doi: 10.1007/BF02787822.  Google Scholar

[3]

M. Colin, L. Jeanjean and M. Squassina, Stability and instability results for standing waves of quasi-linear Schrödinger equations,, Nonlinearity, 23 (2010), 1353.  doi: 10.1088/0951-7715/23/6/006.  Google Scholar

[4]

M. Ghergu and V. Radulescu, "Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics,", Springer Monographs in Mathematics, (2011).   Google Scholar

[5]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle,, Comm. Math. Phys., 68 (1979), 209.  doi: 10.1007/BF01221125.  Google Scholar

[6]

F. Gladiali and M. Squassina, Uniqueness of ground states for a class of quasi-linear elliptic equations,, Adv. Nonlinear Anal., 1 (2012), 159.  doi: 10.1515/ana-2011-0001.  Google Scholar

[7]

F. Gladiali and M. Squassina, On explosive solutions for a class of quasi-linear elliptic equations,, Adv. Nonlinear Stud., ().   Google Scholar

[8]

F. Pacella, Symmetry results for solutions of semilinear elliptic equations with convex non-linearities,, J. Funct. Anal., 192 (2002), 271.  doi: 10.1006/jfan.2001.3901.  Google Scholar

[9]

F. Pacella and T. Weth, Symmetry of solutions to semilinear elliptic equations via Morse index,, Proc. Amer. Math. Soc., 135 (2007), 1753.  doi: 10.1090/S0002-9939-07-08652-2.  Google Scholar

[10]

V. Radulescu, "Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods,", Contemporary Mathematics and Its Applications, 6 (2008).  doi: 10.1155/9789774540394.  Google Scholar

[11]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304.  doi: 10.1007/BF00250468.  Google Scholar

[12]

D. Smets and M. Willem, Partial symmetry and asymptotic behaviour for some elliptic variational problems,, Calc. Var. Partial Differential Equations, 18 (2003), 57.  doi: 10.1007/s00526-002-0180-y.  Google Scholar

[13]

M. Squassina, Existence, multiplicity, perturbation, and concentration results for a class of quasi-linear elliptic problems,, Electron. J. Differential Equations, 7 (2006).   Google Scholar

[14]

M. Squassina, Symmetry in variational principles and applications,, J. London Math. Soc., 85 (2012), 323.  doi: 10.1112/jlms/jdr046.  Google Scholar

[1]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[4]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[5]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[6]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[7]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[8]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[9]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[10]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[11]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[12]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[13]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[14]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[15]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[16]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[17]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[18]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[19]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[20]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]