-
Previous Article
Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results
- CPAA Home
- This Issue
-
Next Article
On symmetry results for elliptic equations with convex nonlinearities
Global dynamics and diffusion limit of a one-dimensional repulsive chemotaxis model
1. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong |
2. | Department of Mathematics, Tulane University, New Orleans, LA 70118 |
References:
[1] |
W. Alt and D. Lauffenburger, Transient behavior of a chemotaxis system modelling certain types of tissue inflammation, J. Math. Biol., 24 (1987), 691-722.
doi: 10.1007/BF00275511. |
[2] |
D. Balding and D. McElwain, A mathematical model of tumour-induced capillary growth, J. Theor. Biol., 114 (1985), 53-73.
doi: 10.1016/S0022-5193(85)80255-1. |
[3] |
S. Childress, Chemotactic collapse in two dimensions, Lect. Notes in Biomath., 55 (1984), 61-68.
doi: 10.1007/978-3-642-45589-6_6. |
[4] |
T. Cieślak, P. Laurencot and C. Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system, Banach Center Publ., 81 (2008), 105-117.
doi: 10.4064/bc81-0-7. |
[5] |
J. Guo, J. Xiao, H. Zhao and C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B Engl. Ed, 29 (2009), 629-641.
doi: 10.1016/S0252-9602(09)60059-X. |
[6] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its con- sequences I, Jahresberichte der DMV, 105 (2003), 103-165. |
[7] |
E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[8] |
E. Keller and L. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 26 (1971), 235-248.
doi: 10.1016/0022-5193(71)90051-8. |
[9] |
H. Levine and B. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.
doi: 10.1137/S0036139995291106. |
[10] |
D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci, 21 (2011), 1631-1650.
doi: 10.1142/S0218202511005519. |
[11] |
T. Li, R. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data, SIAM J. Appl. Math., 72 (2012), 417-443.
doi: 10.1137/110829453. |
[12] |
T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541.
doi: 10.1137/09075161X. |
[13] |
T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998. |
[14] |
T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333.
doi: 10.1016/j.jde.2010.09.020. |
[15] |
T. Li and Z. Wang, Steadily propagating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161-168.
doi: 10.1016/j.mbs.2012.07.003. |
[16] |
C. Lin, W. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[17] |
J. Murray, "Mathematical Biology I: An Introduction," 3rd edition, Springer-Verlag, New York, 2002. |
[18] |
H. Othmer and A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.
doi: 10.1137/S0036139995288976. |
[19] |
L. Segel, A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM J. Appl. Math., 32 (1977), 653-665.
doi: 10.1137/0132054. |
[20] |
J. Sherratt, E. Sage and J. Murray, Chemical control of eukaryotic cell movement: a new model, J. Theor. Biol., 162 (1993), 23-40.
doi: 10.1006/jtbi.1993.1074. |
[21] |
Y. Tao, L. Wang and Z. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst - Series B., 18 (2013), 821-845. |
[22] |
Y. Tao and Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models. Methods Appli. Sci., 23 (2013), 1-36.
doi: 10.1142/S0218202512500443. |
[23] |
Z. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods. Appl. Sci., 31 (2008), 45-70.
doi: 10.1002/mma.898. |
[24] |
M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.
doi: 10.1002/mma.1346. |
[25] |
Y. Yang, H. Chen and W. Liu, On existence of global solutions and blow-up to a system of the reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763-785.
doi: 10.1137/S0036141000337796. |
[26] |
M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2006), 1017-1027.
doi: 10.1090/S0002-9939-06-08773-9. |
show all references
References:
[1] |
W. Alt and D. Lauffenburger, Transient behavior of a chemotaxis system modelling certain types of tissue inflammation, J. Math. Biol., 24 (1987), 691-722.
doi: 10.1007/BF00275511. |
[2] |
D. Balding and D. McElwain, A mathematical model of tumour-induced capillary growth, J. Theor. Biol., 114 (1985), 53-73.
doi: 10.1016/S0022-5193(85)80255-1. |
[3] |
S. Childress, Chemotactic collapse in two dimensions, Lect. Notes in Biomath., 55 (1984), 61-68.
doi: 10.1007/978-3-642-45589-6_6. |
[4] |
T. Cieślak, P. Laurencot and C. Morales-Rodrigo, Global existence and convergence to steady states in a chemorepulsion system, Banach Center Publ., 81 (2008), 105-117.
doi: 10.4064/bc81-0-7. |
[5] |
J. Guo, J. Xiao, H. Zhao and C. Zhu, Global solutions to a hyperbolic-parabolic coupled system with large initial data, Acta Math. Sci. Ser. B Engl. Ed, 29 (2009), 629-641.
doi: 10.1016/S0252-9602(09)60059-X. |
[6] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its con- sequences I, Jahresberichte der DMV, 105 (2003), 103-165. |
[7] |
E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[8] |
E. Keller and L. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 26 (1971), 235-248.
doi: 10.1016/0022-5193(71)90051-8. |
[9] |
H. Levine and B. Sleeman, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683-730.
doi: 10.1137/S0036139995291106. |
[10] |
D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis, Math. Models Methods Appl. Sci, 21 (2011), 1631-1650.
doi: 10.1142/S0218202511005519. |
[11] |
T. Li, R. Pan and K. Zhao, Global dynamics of a chemotaxis model on bounded domains with large data, SIAM J. Appl. Math., 72 (2012), 417-443.
doi: 10.1137/110829453. |
[12] |
T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2009), 1522-1541.
doi: 10.1137/09075161X. |
[13] |
T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis, Math. Models Methods Appl. Sci., 20 (2010), 1967-1998. |
[14] |
T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Differential Equations, 250 (2011), 1310-1333.
doi: 10.1016/j.jde.2010.09.020. |
[15] |
T. Li and Z. Wang, Steadily propagating waves of a chemotaxis model, Math. Biosci., 240 (2012), 161-168.
doi: 10.1016/j.mbs.2012.07.003. |
[16] |
C. Lin, W. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[17] |
J. Murray, "Mathematical Biology I: An Introduction," 3rd edition, Springer-Verlag, New York, 2002. |
[18] |
H. Othmer and A. Stevens, Aggregation, blowup and collapse: The ABC's of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044-1081.
doi: 10.1137/S0036139995288976. |
[19] |
L. Segel, A theoretical study of receptor mechanisms in bacterial chemotaxis, SIAM J. Appl. Math., 32 (1977), 653-665.
doi: 10.1137/0132054. |
[20] |
J. Sherratt, E. Sage and J. Murray, Chemical control of eukaryotic cell movement: a new model, J. Theor. Biol., 162 (1993), 23-40.
doi: 10.1006/jtbi.1993.1074. |
[21] |
Y. Tao, L. Wang and Z. Wang, Large-time behavior of a parabolic-parabolic chemotaxis model with logarithmic sensitivity in one dimension, Discrete Contin. Dyn. Syst - Series B., 18 (2013), 821-845. |
[22] |
Y. Tao and Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models. Methods Appli. Sci., 23 (2013), 1-36.
doi: 10.1142/S0218202512500443. |
[23] |
Z. Wang and T. Hillen, Shock formation in a chemotaxis model, Math. Methods. Appl. Sci., 31 (2008), 45-70.
doi: 10.1002/mma.898. |
[24] |
M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190.
doi: 10.1002/mma.1346. |
[25] |
Y. Yang, H. Chen and W. Liu, On existence of global solutions and blow-up to a system of the reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763-785.
doi: 10.1137/S0036141000337796. |
[26] |
M. Zhang and C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2006), 1017-1027.
doi: 10.1090/S0002-9939-06-08773-9. |
[1] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205 |
[2] |
Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015 |
[3] |
Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61 |
[4] |
Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087 |
[5] |
Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59 |
[6] |
Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure and Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219 |
[7] |
Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925 |
[8] |
Giulio Schimperna, Antonio Segatti, Ulisse Stefanelli. Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 15-38. doi: 10.3934/dcds.2007.18.15 |
[9] |
Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917 |
[10] |
Myeongju Chae, Kyungkeun Kang, Jihoon Lee. Global well-posedness and long time behaviors of chemotaxis-fluid system modeling coral fertilization. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2135-2163. doi: 10.3934/dcds.2020109 |
[11] |
Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625 |
[12] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[13] |
Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319 |
[14] |
Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212 |
[15] |
Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917 |
[16] |
Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147 |
[17] |
Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319 |
[18] |
Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811 |
[19] |
Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767 |
[20] |
Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]