November  2013, 12(6): 3047-3071. doi: 10.3934/cpaa.2013.12.3047

Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results

1. 

Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Caixa postal 668, 13560-970 São Carlos, São Paulo, Brazil

2. 

BCAM Basque Center for Applied Mathematics, Mazarredo 14, E-48009 Bilbao, Basque Country, Spain

Received  October 2012 Revised  February 2013 Published  May 2013

We construct exponential pullback attractors for time continuous asymptotically compact evolution processes in Banach spaces and derive estimates on the fractal dimension of the attractors. We also discuss the corresponding results for autonomous processes.
Citation: Alexandre Nolasco de Carvalho, Stefanie Sonner. Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3047-3071. doi: 10.3934/cpaa.2013.12.3047
References:
[1]

T. Caraballo, A. N. Carvalho, J. A. Langa and L. F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, Nonlinear Anal., 72 (2010), 1967.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, "Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,", Appl. Math. Sci., 182 (2012).   Google Scholar

[3]

J. W. Cholewa, R. Czaja and G. Mola, Remarks on the fractal dimension of bi-space global and exponential attractors,, Boll. Unione Mat. Ital., 1 (2008), 121.   Google Scholar

[4]

D. N. Cheban, P. E. Kloeden and B. Schmalfuss, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems,, Nonlinear Dyn. and Syst. Theory, 2 (2002), 9.   Google Scholar

[5]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics,", Amer. Math. Soc., (2002).   Google Scholar

[6]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic equations,, J. Math. Anal. Appl., 381 (2011), 748.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[7]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations,", Research in Applied Mathematics, (1994).   Google Scholar

[8]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\R ^3$,, C. R. Acad. Sci. Paris Sr. I Math., 330 (2000), 713.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[9]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems,, Proc. R. Soc. Edinburgh Sect.A, 135A (2005), 703.  doi: 10.1017/S030821050000408X.  Google Scholar

[10]

M. A. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors non-autonomous dissipative systems,, J. Math. Soc. Japan, 63 (2011), 647.  doi: 10.2969/jmsj/06320647.  Google Scholar

[11]

J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors,, Discrete Contin. Dyn. Syst., 26 (2010), 1329.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[12]

J. A. Langa and B. Schmalfuss, Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differential equations,, Stoch. Dyn., 4 (2004), 385.  doi: 10.1142/S0219493704001127.  Google Scholar

[13]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956.  doi: 10.1016/j.na.2009.02.065.  Google Scholar

[14]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, (1997).   Google Scholar

show all references

References:
[1]

T. Caraballo, A. N. Carvalho, J. A. Langa and L. F. Rivero, Existence of pullback attractors for pullback asymptotically compact processes,, Nonlinear Anal., 72 (2010), 1967.  doi: 10.1016/j.na.2009.09.037.  Google Scholar

[2]

A. N. Carvalho, J. A. Langa and J. C. Robinson, "Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,", Appl. Math. Sci., 182 (2012).   Google Scholar

[3]

J. W. Cholewa, R. Czaja and G. Mola, Remarks on the fractal dimension of bi-space global and exponential attractors,, Boll. Unione Mat. Ital., 1 (2008), 121.   Google Scholar

[4]

D. N. Cheban, P. E. Kloeden and B. Schmalfuss, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems,, Nonlinear Dyn. and Syst. Theory, 2 (2002), 9.   Google Scholar

[5]

V. Chepyzhov and M. Vishik, "Attractors for Equations of Mathematical Physics,", Amer. Math. Soc., (2002).   Google Scholar

[6]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic equations,, J. Math. Anal. Appl., 381 (2011), 748.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[7]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations,", Research in Applied Mathematics, (1994).   Google Scholar

[8]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\R ^3$,, C. R. Acad. Sci. Paris Sr. I Math., 330 (2000), 713.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[9]

M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional reduction for nonautonomous dynamical systems,, Proc. R. Soc. Edinburgh Sect.A, 135A (2005), 703.  doi: 10.1017/S030821050000408X.  Google Scholar

[10]

M. A. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors non-autonomous dissipative systems,, J. Math. Soc. Japan, 63 (2011), 647.  doi: 10.2969/jmsj/06320647.  Google Scholar

[11]

J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors,, Discrete Contin. Dyn. Syst., 26 (2010), 1329.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[12]

J. A. Langa and B. Schmalfuss, Finite dimensionality of attractors for non-autonomous dynamical systems given by partial differential equations,, Stoch. Dyn., 4 (2004), 385.  doi: 10.1142/S0219493704001127.  Google Scholar

[13]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems,, Nonlinear Anal., 71 (2009), 3956.  doi: 10.1016/j.na.2009.02.065.  Google Scholar

[14]

R. Temam, "Infinite Dimensional Dynamical Systems in Mechanics and Physics,", 2nd edition, (1997).   Google Scholar

[1]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[7]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[8]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[9]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[10]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[11]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[12]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[13]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[14]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[15]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[16]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[17]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[18]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[19]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[20]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (15)

[Back to Top]